

Swiss

Plasma Center

Turbulence in NT TCV: experiments and simulations

Alessandro Balestri

EPFL **Overview**

- Investigate the effect of the Up-Down triangularity imbalance on the confinement in diverted configurations
 - Experimental side: The upper or lower triangularity are varied within a shot, while all the other plasma parameters are kept fixed. The global confinement is then assessed by looking at the normalized beta and energy confinement time.
 - Gyrokinetic simulations: GK GENE simulations have been performed at fixed radius (rho=0.9) in order to isolate the effect of the shape.

EPFL Overview of the scenarios

EPFL

Effect of Up-Down triangularity imbalance in diverted configurations: Experimental evidences

Swiss Plasma Center

EPFL List of shots – Ohmic discharges

δ^{top} scan with $\delta^{XP} < 0$

- 67057 (LSN)
- 67063 (LSN)
- 68954 (LSN)
- 68176 (LSN)
- 68927 (USN)
- 67064 (LSN)
- 67068 (LSN)

δ^{top} scan with δ^{XP} >0

- 68783 (LSN)
- 68924 (USN)

Swiss Plasma Center δ^{XP} scan with δ^{top} <0 • 68943 (USN)

δ^{XP} scan with δ^{top}>0
68785 (LSN)
68934 (USN)

During a δ -scan all the plasma parameters and powers were kept fixed.

EPFL δ^{top} scan

6

^{30.11.2022 -} TSVV2 annual workshop

7

 $\delta^T < 0$ always leads to better confinement

30.11.2022 - TSVV2 annual workshop

EPFL Ohmic discharges (LSN) - δ^{top} scan

Swiss Plasma

Center

- $\delta^T < 0$ always leads to better confinement
- $\delta^{XP} > 0$ leads to slightly better confinement

EPFL Ohmic discharges (USN) - δ^{top} scan

Swiss Plasma Center

30.11.2022 - TSVV2 annual workshop

EPFL Ohmic discharges (LSN) - δ^{XP} scan

Swiss Plasma

Center

EPFL Ohmic discharges (USN) - δ^{XP} scan

EPFL β_N over the " δ " space – Ohmic discharges

Swiss Plasma Center USN

0.6

0.5

0.4

0.3

0.2

0.1

 $^{\mathcal{B}}_{\mathsf{N}}$

30.11.2022 - TSVV2 annual workshop

0.4

0.6

EPFL Limited configurations (previous study)

14

Y Camenen et al 2010 Plasma Phys. Control. Fusion 52 124037

EPFL Limited configurations (previous study)

Y Camenen et al 2010 Plasma Phys. Control. Fusion 52 124037

Swiss

Plasma Center

Preliminary Conclusions and remarks

- The impact of δ^T on the confinement is larger than the impact of δ^{XP} .
- However, the configuration with the best performance in terms of global confinement is the one with negative δ^T and positive δ^{XP} (NP).
- This behaviour was not observed in (old) limited discharges, thus the improvement with positive δ^{XP} could be mainly due to the position of the X-point.

EPFL

Effect of Up-Down triangularity imbalance in diverted configurations: Gyrokinetic simulations

Swiss Plasma Center

A. Balestri **B1**

EPFL **Overview**

- GK simulations with GENE at $\rho_{tor} = 0.9$ with fixed kinetic profiles (from #68954) but different magnetic equilibria.
 - >Goal: to isolate the effect of the shape and reproduce the experimental trend
- All simulations include:
 - ➢ finite beta
 - ➤ collisions
 - > carbon as the main impurity
 - Generalized miller to reconstruct the equilibrium from the eqdsk files

EPFL GK simulations – magnetic equilibria

Swiss Plasma Center

30.11.2022 - TSVV2 annual workshop

A. Balestri **05**

EPFL GK simulations – Linear growth rates & frequencies

Swiss Plasma Center

30.11.2022 - TSVV2 annual workshop

21

EPFL GK simulations – Electron heat flux (NL)

$(\boldsymbol{\delta}^{T}, \boldsymbol{\delta}^{XP})$	<i>Q_e</i> [<i>gB</i>]
(-,-)	698.7
(-,+)	573.4
(+,-)	1364.3
(+,+)	1111.9

- NP with lowest heat flux.
- δ^{XP} positive is better wrt the δ^{XP} negative counterpart.
- Impact of δ^T is larger than δ^{XP} .

Swiss Plasma

Center

EPFL GK simulations – Ion heat flux (NL)

$(\boldsymbol{\delta}^{T}, \boldsymbol{\delta}^{XP})$	Q _i [gB]
(-,-)	373.4
(-,+)	321.1
(+,-)	833.8
(+,+)	817.4

• The effect of δ^{XP} on the ion heat flux is less important than before.

Swiss Plasma Center

EPFL GK simulations – Ion momentum flux (NL)

$(\boldsymbol{\delta}^{T}, \boldsymbol{\delta}^{XP})$	П _і [g B]
(-,-)	-5.09
(-,+)	-2.25
(+,-)	-23.3
(+,+)	-16.6

Swiss Plasma Center

EPFL GK simulations – Electron stiffness

- The stiffness does not change between NN and NP, while the critical gradient does
- The main effect of the XP is thus related to the critical gradients?

EPFL Conclusions

- Experimental evidences show an asymmetry between the impact of δ^T and δ^{XP} .
- The NP configuration showed the best global confinement when compared to NN, PP and PN.
- The comparison with limited configurations suggests that this improvement is specific for diverted shapes and mainly due to the position of the X-point.
- The NP could have better confinement because of the combined beneficial impact of a negative δ^T and the XP in the HFS.
- GK NL simulations are in agreement with the experimental trends, i.e. confirmed the asymmetry between the impact of δ^T and δ^{XP} and when the kinetic profiles are fixed and only the shape is changed, the NP configuration has the lowest fluxes.
- The analysis of the stiffness showed that the main impact of δ^{XP} is on the electron critical gradient.