
Design of a potential new Python HLI
Design of POC: IMASPy

K.L. van de Plassche1

1DIFFER, PO Box 6336, 5600 HH Eindhoven, The Netherlands

June 24, 2020



Underlying rational for this design

• As in IMAS-3087
• The UAL Python interface should be used by non-experts in IMAS, but experts in Python
• Wrapping the UAL Python interface should be as thin as possible (a la IMASviz), not completely

re-worked (a la OMAS)
• We want the IMAS Python API as first level entrance into IMAS for Python users

• Which opens the questions (end of presentation)
• IF we go to thinner wrapping, who will change the wrapping codes? (IMASViz, pyAL, OMAS, H&CD

workflow, JINTRAC workflow)
• IF we go to multi-dev, who is going to support? (WPCD, CPT, ITER, community)
• IF we go to a redesign who will be responsible? (The one redesigning? Some common group?)

K.L. van de Plassche IMASPy
June 24, 2020 2/11



Leading design choices: Extendability and openness

As ’going to multi-dev’ and ’attract (python) devs’ were main points, following design guidelines
were taken:

• Easy to install; no imas installation needed

• Pythonic; Object-oriented design

• Verbose; Give verbose feedback to API consumer

• Maintainable; Lightweight, not-so-fancy codebase

• Unofficial version; Design as drop-in, do not break existing API
As there is no API specification so:

• Use AL user-guide as specification

• Use IMASViz and H&CD workflow as leading use-cases

K.L. van de Plassche IMASPy
June 24, 2020 3/11



Caveat: Explicitly not taken into account

Caveat: This is an outsider, Python-developer view, so:
• No similarity to other (Fortran, cpp) interfaces

• Move from code-gen to dynamic-structures

• Do not take into account non-python devs might maintain this
These might increase maintainer burden!

K.L. van de Plassche IMASPy
June 24, 2020 4/11



Extra wishes by myself

The following decisions are not leading, but used if they don’t conflict
• Stay close to Data Dictionary; use XML directly, no conversion of format

• Stay lightweight; As little dependencies as possible

• Mirror internal structure of Python HLI; Even non-user-facing API should look similar

• Reuse as much as possible existing codebase

K.L. van de Plassche IMASPy
June 24, 2020 5/11



An outsider understanding: IMASViz

Now: Plan:



An outsider understanding: H&CD workflow

Now: Plan:



IMASPy design: structure (user facing)

Decouple Structure from Data Dictionary by recursive design, read XML at
imas_entry = imas.ids(shot, run_in, xml_path=idsdef, verbosity=2)

K.L. van de Plassche IMASPy
June 24, 2020 8/11



IMASPy design: Access layer

Decouple Structure from AL by recursive design, connect to AL-LL at
imas_entry = imas.ids(shot, run_in, ual_version=’4.8.0’

K.L. van de Plassche IMASPy
June 24, 2020 9/11



IMASPy design: Installing

• IMASPy can be installed standalone, no IMAS needed

• To have the DD, need an IMASDef.xml during runtime (in some accessible folder)
• To interact with AL, need at install time (or in some publicly accessible folder)

• Need access to AL sources at install time, e.g. git.iter.org/imas/access-layer.git

• Need access to compilers and possible Cython at install time

K.L. van de Plassche IMASPy
June 24, 2020 10/11



To discuss for next steps

• CPT is interested in this design, but not able to support. Will keep close view and possible
switch support from old HLI to IMASPy if users demand it

• IO is interested in this design, but with support on voluntary basis (thanks O. Hoenen and
S. Pinches!)

So in the long term:
• I made this in my free time, who wants to join?

• IMASPy is ’drop-in’ designed, who is willing to try? (note: Only small set of features
implemented yet!)

Practically:
• As not supported by CPT, IMASPy will exist in parallel to Python HLI

• Get started here: https://gitlab.com/imaspy-dev/imaspy

K.L. van de Plassche IMASPy
June 24, 2020 11/11

https://gitlab.com/imaspy-dev/imaspy


Backup

K.L. van de Plassche IMASPy
June 24, 2020 12/11



K.L. van de Plassche IMASPy
June 24, 2020 13/11


