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OUTLINE

« Boundary condition types

* BCs used in COMPASS simulation and simulation domain

* An impact of BCs on furbulence

* Impact of BCs on electron velocities and vertical electric field
« Conclusion
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GBS CODE

GLOBAL BRAGINSKII SOLVER

« First principle, 3D, flux-driven, global, turbulence code
for plasma edge simulations based on Braginskii
equations [1].

* Full plasma volume, Divertor geometry,
electromagnetic effects, kinetic neutrals, ion
temperature dynamics, self-consistent turbulence
evolution.

« High computational requirements (~2000 cores, ~5-10
M CPU hours).

« Validation on COMPASS tokamak - first validation of
full-size simulation after TCV.

* Validation on COMPASS will include electron

temperature and plasma potential fluctuations.
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GBS - EQUATIONS

EQUATIONS

» Braginskii equations are solved, Boussinesq
approximation is not used.
7 fields are evolved during each step:

* Density, electron and ion parallel velocity, vorticity,

electron and ion temperature, and psi (if
electromagnetic effects are enabled).
* |If kinetic neutrals are included:

« Neutral density, and neutral parallel velocity.
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GBS - BOUNDARY CONDITIONS

L
vH,-:ics I+ —,

BOUNDARY CONDITIONS =

on=T n
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asn = aST; = 07

« BCs play an important role in the simulation. ¢z, 2) = Az, 2)Te(2, 2), Q—="", /1+58§vw,

- Applied at the magnetic presheath. PAT o0 = " micy

Ti(x, 2)
ope . Az, z)=A— T .
« There are specific sets of BCs for plasma potfential and 2 V' L) eI+
for other fields.

« Plasma potential uses multiple conditions:
* Man - Dirichlet, Neumann — fixing all fields. Rob

asvHi,

asVHi,

Plx, 2) = Az, 2)To(z, 2)
- Rfac(m)af‘ll(l)Bmgn(a/)To(Z, Z) (ayn(an Z) + 17183/11(\(3’“ Z)) s

where
« pAT - fixing potential to ATe , other fields Man. Pispitrer () Frac,
* Tar - fixing potential to ATe, others Mag
« Robin - allowing potential to vary from ATe. Mag B, ) = -?Lmayv”i(x,z),
* Magnetic - full conductive condition. TG

16/11/2022 5



GBS - BOUNDARY CONDITIONS
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« There are specific sets of BCs for plasma potential and 2 T (2) eI+
for other fields.
) ) o Plx, 2) = Az, 2)To(z, 2)
* Plasma potential uses multiple conditions: Rob — Riac(2)0y 0 (2) Butgn(2) T (w, 2) (dyn(w, 2) + 1719, Ts(w, 2)) ,
* Man - Dirichlet, Neumann — fixing all fields. ° where
. pAT - fixing potential o ATe , other fields Man. ispitaer (@) Frac,
* Tar - fixing potential to ATe, others Mag
« Robin - allowing potential to vary from ATe. Mag B, ) = -?Lmayv”i(x,z),
* Magnetic - full conductive condition. TG

16/11/2022 6



GBS - BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

BCs play an important role in the simulation.

Applied at the magnetic presheath.

There are specific sets of BCs for plasma potential and
for other fields.

Plasma potential uses multiple conditions:

* Man - Dirichlet, Neumann — fixing all fields.

« pAT - fixing potential to ATe , other fields Man.

* Tar - fixing potential to ATe, others Mag

* Robin — allowing potential to vary from ATe.
* Magnetic - full conductive condition.
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14 TTe(m:z)
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GBS — BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

BCs play an important role in the simulation.
Applied at the magnetic presheath.

There are specific sets of BCs for plasma potential and

for other fields.

Plasma potential uses multiple conditions:

* Man - Dirichlet, Neumann — fixing all fields.

« pAT - fixing potential to ATe , other fields Man.

* Tar - fixing potential to ATe, others Mag.
* Robin — allowing potential to vary from ATe.
* Magnetic - full conductive condition.

Man

pPAT

Rob

v“l-zics 1+FI,

e

=+c 1—|——Ti ex (A .
% . _
TRy T TN

dsn :$%9ﬂniv
I o
asn - aS]; - 0’
o(z,2) = Az, 2)Te(x, 2), Q::ijncs l—i—ﬁa_qzsv\ia
e

N Ti(z, 2) A =F — s,
Mo = A=y 14r g e/1-7

Plx,2) = Ax, 2)To(z, 2)
— Riac(2)0, U (2) Byign (@) To(, 2) (Oyn(z, 2) + 1.710,T.(x, 2)) ,

where
Mﬂspitzer($)Ffac:
e res(x, 2)
Oyb(a, 2) = —— FE—Byuyi(a, 2),
14 TTe(m:z)

16/11/2022 8




GBS - BOUNDARY CONDITIONS
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« There are specific sets of BCs for plasma potential and 2 T (2) 147
for other fields.
) ) o Plx, 2) = Az, 2)To(z, 2)
* Plasma potential uses multiple conditions: Rob — Riac(2)0y 0 (2) Butgn(2) T (w, 2) (dyn(w, 2) + 1719, Ts(w, 2)) ,
* Man - Dirichlet, Neumann — fixing all fields. ° where
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* Tar - fixing potential to ATe, others Mag
0,V
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Magnetic - full conductive condition.
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GBS - BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

« BCs play an important role in the simulation.
« Applied at the magnetic presheath.

« There are specific sets of BCs for plasma potential and

for other fields.
« Plasma potential uses multiple conditions:
* Man - Dirichlet, Neumann — fixing all fields.
« pAT - fixing potential to ATe , other fields Man.
* Tar - fixing potential to ATe, others Mag

* Robin — allowing potential fo vary from ATe.
* Magnetic - full conductive condition.
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ROBIN BOUNDARY CONDITION

BOUNDARY CONDITIONS S .
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COMPASS SET OF BCS

In the case of COMPASS simulation, all the
Tar, Rob, and Magnetic BC were applied on
the boftom boundary - the divertor position.
Tar condition (potential fixed to ATe) used at
left and top boundary.

Dirichlet and Neumann conditions are set
on right boundary for all fields.

It was shown, turbulent structures disappear
before touching the right boundary.
Influence of the Dirichlet boundary is
therefore not propagating inside plasma.
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¢ = AT,,Mag on other fields

b = AT,
Mag on other fields

¢ = AT,,
Dirichlet or Neumann

on other fields

Full Bohm boundary conditions
(J. Loizu PoP 2012)
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AN IMPACT OF BCs ON TURBULENCE
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ROBIN VS MAG BC
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pPAT

Tar

plasma potential in V

[/

« Similar blob shapes and amplitudes are

- observed for both the Rob and Mag.
- * A bif lower amplitudes of negative
structures for the Rob BC.

* Both Rob and Mag should be
equivalent to each other.

* Usage of Mag is however prefered, Rob
used for transition from Tar.

e Furthermore, problem with Poisson

- solver and Rob BC in COMPASS

e - simulafion leading to code slowening.

Tgr
-
pPAT

Mag
Full conductive



ELECTRON PARALLEL VELOCITIES IN MAG

electron parallel velocity in cs
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Significantly higher values (~3x)of vpare for Mag BC.
Sign represents direction with respect to magnetic

field lines alignment.

The 1D profile is smoothed by Tanh function in ghost
cells where mag. Field is tangent to surface.
Electron and ion parallel velocity set to 0 between
the two regions (plus zero derivative of vpari).
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VERTICAL ELECTRIC FIELD AT BC

: Vertical electric field vji=%c¢s 1+£,
) 0 Ez calculated between ghost cells! 7 e
E : D : , . e=%coy /14 exp(A——-),
924 Crash of vertical electric field at inner strike point. i T ( T>
-0.4 o ey e . 851’1::}:7&51/””
. Hard limit in code cutting Ez>01to 0 ‘. /1+%
_0_8: The point in middle forced to zero by setting O,T. = T, = 0,
" derivative of ion parallel velocity to zero. Q_vm" /1—1—%8_&\/“,
e e
127 I Causing parallel electron velocity to increase. 20 =75 d,
500 600 . . e/ 1+ o
Leading to crash in consequence. I
Self-refresh after several time units.
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electron parallel velocity in cs
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BOUNDARY PLOTS

The crash in electron parallel
velocities, caused by vertical
electric field, was threatened by
adjusting the mass ratio and the
sheath drop A.

The mechanism of positive vertical
electric field formation is however
still not well understood.

Already appeared several times
using Mag BC in past.

Since now, the problem did not
appear again.




SUMMARY

SUMMARY

« COMPASS simulation showed significant impact of BCs on simulation:
» Tar condition caused huge amplitudes in potential, exceeding 2 000 V leading to crash.

* Both Robin and Magnetic BCs showed similar turbulence properties.
* Problems with Poisson solver combined with Robin boundary condition were observed.
« Magnetic boundary condifion performed best, however, problems with vertical electric field were observed:

* Increasing Ez caused acceleration of electrons and simulation crash.
« The problem however fixed itself after enough simulation time and mass ratio adjustment.

» This mechanism must be further investigated.
* Since now, the problem with the bottom boundary did not happen again.
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