INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES

BOUNDARY CONDITIONS IN THE GBS SIMULATION OF THE COMPASS TOKAMAK

P. MACHA¹²,

SUPPORTED BY: D. GALASSI³, D. OLIVEIRA³, J. SEIDL², D. TSKHAKAYA²

List of affiliations: 1) Institute of the plasma physics of the CAS 2) Faculty of nuclear science and physical engineering 3) Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC)

- Boundary condition types
- BCs used in COMPASS simulation and simulation domain
- An impact of BCs on turbulence
- Impact of BCs on electron velocities and vertical electric field
- Conclusion

GBS CODE

GLOBAL BRAGINSKII SOLVER

- First principle, 3D, flux-driven, global, turbulence code for plasma edge simulations based on Braginskii equations [1].
- Full plasma volume, Divertor geometry, electromagnetic effects, kinetic neutrals, ion temperature dynamics, self-consistent turbulence evolution.
- High computational requirements (~2000 cores, ~5-10 M CPU hours).
- Validation on COMPASS tokamak first validation of full-size simulation after TCV.
- Validation on COMPASS will include electron temperature and plasma potential fluctuations.

GBS - EQUATIONS

EQUATIONS

- Braginskii equations are solved, Boussinesq approximation is not used.
- 7 fields are evolved during each step:
 - Density, electron and ion parallel velocity, vorticity, electron and ion temperature, and psi (if electromagnetic effects are enabled).
- If kinetic neutrals are included:
 - Neutral density, and neutral parallel velocity.

$$\nabla \cdot \left(n \nabla_{\perp} \phi \right) = \Omega - \frac{\nabla_{\perp}^2 p_i}{e},$$

$$\left(\nabla_{\perp}^2 - \frac{e^2 \mu_0}{m_e} n \right) v_{\parallel e} = \nabla_{\perp}^2 U_{\parallel e} - \frac{e^2 \mu_0}{m_e} n v_{\parallel i} + \frac{e^2 \mu_0}{m_e} \overline{j}_{\parallel}.$$

$$U_{\parallel e} = v_{\parallel e} + e \Psi/m_e$$

 $\begin{array}{l} \text{Particle} \\ \text{confinement} \end{array} \quad \frac{\partial n}{\partial t} = -\frac{1}{B}[\phi, n] + \frac{2}{eB} \Big[C(p_e) - nC(\phi) \Big] - \nabla_{\parallel}(nv_{\parallel e}) + D_n \nabla_{\perp}^2 n + s_n + v_{\text{iz}}n_n - v_{\text{rec}}n \,, \end{array}$ (1) $\frac{\partial \Omega}{\partial t} = -\frac{1}{B} \nabla \cdot [\phi, \omega] - \nabla \cdot (v_{\parallel i} \nabla_{\parallel} \omega) + \frac{B \Omega_{ci}}{e} \nabla_{\parallel} j_{\parallel} + \frac{2 \Omega_{ci}}{e} C(p_e + p_i)$ Vorticity $+\frac{\Omega_{ci}}{2\alpha}C(G_i)+D_{\Omega}\nabla_{\perp}^2\Omega-\frac{n_n}{n}v_{cx}\Omega,$ (2) $-\frac{\partial U_{\parallel e}}{\partial t} = -\frac{1}{B}[\phi, v_{\parallel e}] - v_{\parallel e} \nabla_{\parallel} v_{\parallel e} + \frac{e}{m_e} \left(\frac{j_{\parallel}}{\sigma_{\parallel}} + \nabla_{\parallel} \phi - \frac{1}{en} \nabla_{\parallel} p_e - \frac{0.71}{e} \nabla_{\parallel} T_e - \frac{2}{3en} \nabla_{\parallel} G_e\right)$ Electron inertia $+ D_{v_{\parallel e}} \nabla_{\perp}^2 v_{\parallel e} + \frac{n_{\rm n}}{n} (v_{\rm en} + 2v_{\rm iz}) (v_{\parallel n} - v_{\parallel e}),$ (3) $\frac{\partial v_{\parallel i}}{\partial t} = -\frac{1}{R} [\phi, v_{\parallel i}] - v_{\parallel i} \nabla_{\parallel} v_{\parallel i} - \frac{1}{m \cdot n} \nabla_{\parallel} (p_e + p_i) - \frac{2}{3m \cdot n} \nabla_{\parallel} G_i$ ion inertia $+ D_{v_{\parallel i}} \nabla_{\perp}^2 v_{\parallel i} + \frac{n_{\rm n}}{n} (v_{\rm iz} + v_{\rm cx}) (v_{\parallel n} - v_{\parallel i}),$ (4)electron $\frac{\partial T_e}{\partial t} = -\frac{1}{B}[\phi, T_e] - v_{\parallel e} \nabla_{\parallel} T_e + \frac{2}{3} T_e \Big[0.71 \frac{\nabla_{\parallel} j_{\parallel}}{en} - \nabla_{\parallel} v_{\parallel e} \Big] + \frac{4}{3} \frac{T_e}{eB} \Big[\frac{7}{2} C(T_e) + \frac{T_e}{n} C(n) - eC(\phi) \Big]$ energy confinement $+\nabla_{\parallel}(\boldsymbol{\chi}_{\parallel e}\nabla_{\parallel}T_{e})+D_{T_{e}}\nabla_{\perp}^{2}T_{e}+s_{T_{e}}-\frac{n_{n}}{n}v_{en}m_{e}\frac{2}{2}v_{\parallel e}(v_{\parallel n}-v_{\parallel e})$ $-2\frac{m_e}{m_i}\frac{1}{\tau_e}(T_e-T_i)+\frac{n_n}{n}v_{iz}\left[-\frac{2}{3}E_{iz}-T_e+m_ev_{\parallel e}\left(v_{\parallel e}-\frac{4}{3}v_{\parallel n}\right)\right],$ (5)ion $\frac{\partial T_i}{\partial t} = -\frac{1}{R}[\phi, T_i] - v_{\parallel i} \nabla_{\parallel} T_i + \frac{4}{3} \frac{T_i}{eR} \Big[C(T_e) + \frac{T_e}{n} C(n) - eC(\phi) \Big] - \frac{10}{3} \frac{T_i}{eR} C(T_i)$ enerav confinement $+\frac{2}{2}T_i\Big[(v_{\parallel i}-v_{\parallel e})\frac{\nabla_{\parallel}n}{n}-\nabla_{\parallel}v_{\parallel e}\Big]+\nabla_{\parallel}(\boldsymbol{\chi}_{\parallel i}\nabla_{\parallel}T_i)+D_{T_i}\nabla_{\perp}^2T_i+s_{T_i}$ $+2\frac{m_e}{m_e}\frac{1}{\tau}(T_e-T_i)+\frac{n_n}{n}(v_{iz}+v_{cx})\left[T_n-T_i+\frac{1}{3}(v_{\parallel n}-v_{\parallel i})^2\right],$ (6)

GBS – BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

- BCs play an important role in the simulation.
- Applied at the magnetic presheath.
- There are specific sets of BCs for plasma potential and for other fields.
- Plasma potential uses multiple conditions:
 - Man Dirichlet, Neumann fixing all fields.
 - pAT fixing potential to ΛT_e , other fields Man.
 - Tar fixing potential to $\Lambda T_e,$ others Mag
 - Robin allowing potential to vary from $\Lambda T_e.$
 - Magnetic full conductive condition.

		$T_e = T_e + T_e $
Man	$\phi(x,z) = A$	$\partial_s n = \mp rac{n}{c_s \sqrt{1+rac{T_i}{T_e}}} \partial_s v_{\parallel i} ,$
	$\varphi(x,z) = 1$	$\partial_s T_e = \partial_s T_i = 0 ,$
	$\phi(x,z) = \Lambda(x,z)T_{\rm e}(x,z),$	$\Omega=\mprac{m_in}{e}c_s\sqrt{1+rac{T_i}{T_e}}\partial_{ss}^2 v_{\parallel i},$
рат	$\Lambda(x,z) = \lambda - \sqrt{1 + \tau \frac{T_{\rm i}(x,z)}{T_{\rm e}(x,z)}}$	$\partial_s \phi = \mp rac{m_i c_s}{e \sqrt{1+rac{T_i}{T_e}}} \partial_s u_{\parallel i} ,$
	$\phi(x,z) = \Lambda(x,z)T_{c}(x,z)$	
Dala	$(x, x) = R_{\text{fac}}(x)\partial_x \Psi(x)B_{\text{sign}}$ $-R_{\text{fac}}(x)\partial_x \Psi(x)B_{\text{sign}}$	$(x)T_{\mathrm{c}}(x,z)\left(\partial_{y}n(x,z)+1.71\partial_{y}T_{\mathrm{c}}(x,z)\right),$
Rob	where $R_{\rm fac}(x) = \sum_{z} \frac{1}{c_{\rm s}(x)}$	$rac{T_{ m c}(x,z)}{\sqrt{1+ aurac{T_{ m i}(x,z)}{T_{ m e}(x,z)}}}\mu\mu_{ m spitzer}(x)F_{ m fac},$
Mag	$\partial_{u}\phi(x,z) = -\frac{\frac{\partial_{x}\psi}{\partial_{x}\psi }c_{\mathrm{s}}(x,z)}{\frac{\partial_{y}\psi}{\partial_{x}\psi }c_{\mathrm{s}}(x,z)}\partial_{u}v_{\mathrm{H}}$	(x,z),

 $\sqrt{1+\tau \frac{T_{i}(x,z)}{T_{e}(x,z)}}$

 $v_{\parallel i} = \pm c_s \sqrt{1 + \frac{T_i}{T_e}},$

 $v_{ii} = +c \sqrt{1 + \frac{T_i}{1 + \alpha}} \exp\left(\Lambda - \frac{e\phi}{\alpha}\right)$

GBS – BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

- BCs play an important role in the simulation.
- Applied at the magnetic presheath.
- There are specific sets of BCs for plasma potential and for other fields.
- Plasma potential uses multiple conditions:
 - Man Dirichlet, Neumann fixing all fields.
 - **pAT** fixing potential to ΛT_e , other fields Man.
 - Tar fixing potential to $\Lambda T_e,$ others Mag
 - Robin allowing potential to vary from $\Lambda T_e.$
 - Magnetic full conductive condition.

		$ u_{\parallel i} = \pm c_s \sqrt{1 + rac{T_i}{T_e}}, $
		$v_{\parallel e} = \pm c_s \sqrt{1 + rac{T_i}{T_e}} \exp\left(\Lambda - rac{e\phi}{T_e} ight),$
<mark>Man</mark>	$\phi(x,z) = A$	$\partial_s n = \mp rac{n}{c_s \sqrt{1 + rac{T_i}{T_e}}} \partial_s v_{\parallel i} ,$ $\partial_s T_e = \partial_s T_i = 0 .$
pAT	$\phi(x,z) = \Lambda(x,z)T_{\rm e}(x,z),$	$\Omega = \pm rac{m_i n}{e} c_s \sqrt{1 + rac{T_i}{T_e}} \partial_{ss}^2 v_{\parallel i} ,$
	$\Lambda(x,z) = \lambda - \sqrt{1 + \tau \frac{T_{i}(x,z)}{T_{c}(x,z)}}$	$\partial_s \phi = \mp rac{1}{e \sqrt{1+rac{T_i}{T_e}}} \partial_s u_{\parallel i} ,$
	$\phi(x, z) = \Lambda(x, z)T_{\rm e}(x, z)$ $- R_{\rm fac}(x)\partial_x \Psi(x)$	$B_{\rm sign}(x)T_{\rm c}(x,z)\left(\partial_{\mu}n(x,z)+1.71\partial_{\mu}T_{\rm c}(x,z)\right),$
Rob	where $R_{\rm fac}(x) = \sum_{z} \frac{T_{\rm e}(x,z)}{c_{\rm s}(x)\sqrt{1 + \tau \frac{T_{\rm i}(x,z)}{T_{\rm e}(x,z)}}} \mu \mu_{\rm spitzer}(x) F_{\rm fac},$	
	$\frac{\partial_x \Psi}{\partial x} c(r, z)$	
Mag	$\left \ \partial_y \phi(x,z) = -rac{ \partial_x \Psi ^{\mathrm{C}_{\mathrm{S}}(x,z)}}{\sqrt{1 + au rac{\mathrm{T}_{\mathrm{i}}(x,z)}{\mathrm{T}_{\mathrm{e}}(x,z)}}} ight.$	$\partial_y v_{\parallel \mathrm{i}}(x,z),$

GBS – BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

- BCs play an important role in the simulation.
- Applied at the magnetic presheath.
- There are specific sets of BCs for plasma potential and for other fields.
- Plasma potential uses multiple conditions:
 - Man Dirichlet, Neumann fixing all fields.
 - **pAT** fixing potential to ΛT_e , other fields Man.
 - Tar fixing potential to $\Lambda T_e,$ others Mag
 - Robin allowing potential to vary from $\Lambda T_e.$
 - Magnetic full conductive condition.

		$V_{\parallel e} = \pm c_s \sqrt{1 + T_e} C_{x} p (T_e - T_e),$
۸an	$\phi(x,z) = A$	$\partial_s n = \mp rac{n}{c_s \sqrt{1 + rac{T_i}{T_e}}} \partial_s v_{\parallel i}, \ \partial_s T_e = \partial_s T_i = 0,$
<mark>DAT</mark>	$\phi(x,z) = \Lambda(x,z)T_{\rm e}(x,z),$ $\Lambda(x,z) = \lambda - \sqrt{1 + \tau \frac{T_{\rm i}(x,z)}{T_{\rm e}(x,z)}}$	$egin{aligned} \Omega = & \mp rac{m_i n}{e} c_s \sqrt{1 + rac{T_i}{T_e}} \partial_{ss}^2 v_{\parallel i}, \ \partial_s \phi = & \mp rac{m_i c_s}{e \sqrt{1 + rac{T_i}{T_e}}} \partial_s v_{\parallel i}, \end{aligned}$
₹ob	$\phi(x,z) = \Lambda(x,z)T_{\rm e}(x,z)$ $-R_{\rm fac}(x)\partial_x\Psi(x)B_{\rm s}$ where $R_{\rm fac}(x) = \sum_{z} \frac{-1}{c_{\rm s}}$	$egin{align} & ext{sign}(x)T_{ ext{c}}(x,z)\left(\partial_y n(x,z)+1.71\partial_y T_{ ext{c}}(x,z) ight), \ & ext{} \ & ext$

 $v_{\parallel i} = \pm c_s \sqrt{1 + \frac{T_i}{T_e}},$

Mag

$$\partial_y \phi(x,z) = -rac{\partial_x \Psi}{|\partial_x \Psi|} c_{\mathrm{s}}(x,z) \over \sqrt{1 + au rac{T_{\mathrm{i}}(x,z)}{T_{\mathrm{e}}(x,z)}}} \partial_y v_{\parallel \mathrm{i}}(x,z),$$

GBS – BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

- BCs play an important role in the simulation.
- Applied at the magnetic presheath.
- There are specific sets of BCs for plasma potential and for other fields.
- Plasma potential uses multiple conditions:
 - Man Dirichlet, Neumann fixing all fields.
 - **pAT** fixing potential to ΛT_e , other fields Man.
 - **Tar** fixing potential to ΛT_e , others Mag.
 - Robin allowing potential to vary from $\Lambda T_e.$
 - Magnetic full conductive condition.

		$\sum_{n=1}^{ v _e} \sum_{s=1}^{ v _e} \sum_{s$
Man	$\phi(x,z) = A$	$\partial_s n = \mp \frac{1}{c_s \sqrt{1 + \frac{T_i}{T_e}}} \partial_s v_{\parallel i},$
~ ^ T	$\phi(x,z) = \Lambda(x,z)T_{\rm e}(x,z),$	$egin{aligned} \partial_s I_e &= \partial_s I_i = 0, \ \Omega &= &\mp rac{m_i n}{e} c_s \sqrt{1 + rac{T_i}{T_e}} \partial_{ss}^2 v_{\parallel i}, \end{aligned}$
PAI	$\Lambda(x,z) = \lambda - \sqrt{1 + \tau \frac{T_{\rm i}(x,z)}{T_{\rm e}(x,z)}}$	$\partial_s \phi = \mp rac{m_i c_s}{e \sqrt{1+rac{T_i}{T_e}}} \partial_s u_{\parallel i} ,$
Rob	$\phi(x, z) = \Lambda(x, z)T_{\rm e}(x, z) - R_{\rm fac}(x)\partial_x\Psi(x)B_{\rm sign}(x)$	$T_{\mathrm{c}}(x,z)\left(\partial_y n(x,z)+1.71\partial_y T_{\mathrm{c}}(x,z)\right),$
	where $R_{\rm fac}(x) = \sum_{z} \frac{T_{\rm c}(x,z)}{c_{\rm s}(x)\sqrt{1 + \tau \frac{T_{\rm i}(x,z)}{T_{\rm e}(x,z)}}} \mu \mu_{\rm spitzer}(x) F_{\rm fac},$	

Mag

 $egin{aligned} \partial_y \phi(x,z) = -rac{|\overline{\partial_x^{*}\Psi}| \, c_{\mathrm{s}}(x,z)}{\sqrt{1+ au rac{T_{\mathrm{i}}(x,z)}{T_{\mathrm{r}}(x,z)}}} \partial_y v_{\parallel \mathrm{i}}(x,z), \end{aligned}$

 $v_{\parallel i} = \pm c_s \sqrt{1 + \frac{T_i}{T_e}},$ $v_{\parallel i} = \pm c_s \sqrt{1 + \frac{T_i}{T_e}} \exp\left(\Delta - \frac{e\phi}{\Phi}\right)$

GBS – BOUNDARY CONDITIONS

 $v_{\parallel i} = \pm c_s \sqrt{1 + \frac{T_i}{T_e}},$

BOUNDARY CONDITIONS

- BCs play an important role in the simulation.
- Applied at the magnetic presheath.
- There are specific sets of BCs for plasma potential and for other fields.
- Plasma potential uses multiple conditions:
 - Man Dirichlet, Neumann fixing all fields.
 - pAT fixing potential to ΛT_e , other fields Man.
 - Tar fixing potential to $\Lambda T_{e},$ others Mag
 - Robin allowing potential to vary from $\Lambda T_e.$
 - Magnetic full conductive condition.

GBS – BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

- BCs play an important role in the simulation.
- Applied at the magnetic presheath.
- There are specific sets of BCs for plasma potential and for other fields.
- Plasma potential uses multiple conditions:
 - Man Dirichlet, Neumann fixing all fields.
 - pAT fixing potential to ΛT_e , other fields Man.
 - Tar fixing potential to $\Lambda T_e,$ others Mag
 - **Rob**in allowing potential to vary from ΛT_e .
 - Magnetic full conductive condition.

	$v_{\parallel e} = \pm c_s \sqrt{1 + \frac{T_e}{T_e}} \exp\left(\frac{T_e}{T_e}\right)$	
Man	$egin{aligned} \partial_s n = & \mp rac{n}{c_s \sqrt{1 + rac{T_i}{T_e}}} \partial_s v_{\parallel i}, \ \partial_s T_e &= \partial_s T_i = 0, \end{aligned}$	
pAT	$ \begin{split} \phi(x,z) &= \Lambda(x,z)T_{\rm e}(x,z), \\ \Lambda(x,z) &= \lambda - \sqrt{1 + \tau \frac{T_{\rm i}(x,z)}{T_{\rm e}(x,z)}} \end{split} \qquad \qquad$	
Rob	$\begin{split} \phi(x,z) &= \Lambda(x,z)T_{\rm e}(x,z) \\ &- R_{\rm fac}(x)\partial_x\Psi(x)B_{\rm sign}(x)T_{\rm c}(x,z)\left(\partial_y n(x,z) + 1.71\partial_y T_{\rm c}(x,z)\right), \\ \text{where} \\ R_{\rm fac}(x) &= \sum_{z} \frac{T_{\rm c}(x,z)}{c_{\rm s}(x)\sqrt{1 + \tau \frac{T_{\rm i}(x,z)}{T_{\rm c}(x,z)}}} \mu \mu_{\rm spitzer}(x)F_{\rm fac}, \end{split}$	
۸ag	$\partial_y \phi(x,z) = -rac{\partial_x \Psi}{ \partial_x \Psi } c_{ m s}(x,z) \over \sqrt{1 + au rac{T_{ m i}(x,z)}{T_{ m e}(x,z)}}} \partial_y v_{\parallel m i}(x,z),$	

 $v_{\parallel i} = \pm c_s \sqrt{1 + \frac{T_i}{T_e}},$

 $\sqrt{\frac{T_i}{1+T_i}}$ (ϕ)

ROBIN BOUNDARY CONDITION

 $egin{aligned} \partial_y \phi(x,z) = -rac{\partial_x \Psi}{|\partial_x \Psi|} c_{
m s}(x,z) \ \sqrt{1 + au rac{T_{
m i}(x,z)}{T_{
m e}(x,z)}} \partial_y v_{\parallel
m i}(x,z), \end{aligned}$

BOUNDARY CONDITIONS

$$P(x,z) = \Lambda(x,z)T_{\rm e}(x,z) - R_{\rm fac}(x)\partial_x\Psi(x)B_{\rm sign}(x)T_{\rm e}(x,z)\left(\partial_y n(x,z) + 1.71\partial_y T_{\rm e}(x,z)\right),$$

where

Φ

$$R_{\rm fac}(x) = \sum_{z} \frac{T_{\rm e}(x,z)}{c_{\rm s}(x)\sqrt{1 + \tau \frac{T_{\rm i}(x,z)}{T_{\rm e}(x,z)}}} \mu \mu_{\rm spitzer}(x) F_{\rm fac},$$

Mag

- Tar fixing potential to ΛT_e , others Mag
- **Rob**in allowing potential to vary from ΛT_{e} .
- **Mag**netic full conductive condition.

 $\begin{aligned} v_{\parallel i} &= \pm c_s \sqrt{1 + \frac{T_i}{T_e}}, \\ v_{\parallel e} &= \pm c_s \sqrt{1 + \frac{T_i}{T_e}} \exp\left(\Lambda - \frac{e\phi}{T_e}\right), \end{aligned}$

COMPASS SET OF BCS

- In the case of COMPASS simulation, all the Tar, Rob, and Magnetic BC were applied on the bottom boundary - the divertor position.
- Tar condition (potential fixed to λT_e) used at left and top boundary.
- **Dirichlet** and **Neumann** conditions are set on right boundary for all fields.
- It was shown, turbulent structures disappear before touching the right boundary.
- Influence of the Dirichlet boundary is therefore not propagating inside plasma.

16/11/2022

AN IMPACT OF BCs ON TURBULENCE

: IPP

ROBIN VS MAG BC

- Similar blob shapes and amplitudes are observed for both the **Rob** and **Mag**.
- A bit lower amplitudes of negative structures for the **Rob** BC.
- Both **Rob** and **Mag** should be equivalent to each other.
- Usage of **Mag** is however prefered, **Rob** used for transition from **Tar**.
- Furthermore, problem with Poisson solver and **Rob** BC in COMPASS simulation leading to code slowening.

ELECTRON PARALLEL VELOCITIES IN MAG

Electron parallel velocity

Electron parallel velocity Zoomed on FPR

700

-2

- Significantly higher values (~3x) of vpare for Mag BC.
- Sign represents direction with respect to magnetic field lines alignment.
- The 1D profile is smoothed by Tanh function in ghost cells where mag. Field is tangent to surface.
- Electron and ion parallel velocity set to 0 between the two regions (plus zero derivative of vpari).

1D profile of electron parallel velocity at the bottom boundary

: IPP

VERTICAL ELECTRIC FIELD AT BC

BOUNDARY PLOTS

 The crash in electron parallel velocities, caused by vertical electric field, was threatened by adjusting the mass ratio and the sheath drop Λ.

10

5

0

-10

- The mechanism of positive vertical electric field formation is however still not well understood.
- Already appeared several times using **Mag** BC in past.
- Since now, the problem did not appear again.

Normal values

Crash in electron velocity

SUMMARY

- COMPASS simulation showed significant impact of BCs on simulation:
 - Tar condition caused huge amplitudes in potential, exceeding 2 000 V leading to crash.
 - Both **Rob**in and **Mag**netic BCs showed similar turbulence properties.
- Problems with Poisson solver combined with **Robin** boundary condition were observed.
- Magnetic boundary condition performed best, however, problems with vertical electric field were observed:
 - Increasing Ez caused acceleration of electrons and simulation crash.
 - The problem however fixed itself after enough simulation time and mass ratio adjustment.
 - This mechanism must be further investigated.
 - Since now, the problem with the bottom boundary did not happen again.

- 1. M. Giacomin et al J. Comput. Phys. 463 (2022) 111294 (The GBS code for the self-consistent simulation of plasma turbulence and kinetic neutral dynamics in the tokamak boundary)
- 2. M. Giacomin *et al* 2021 *Nucl. Fusion* **61** 076002 (Theory-based scaling laws of near and far scrape-off layer widths in single-null L-mode discharges)

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

