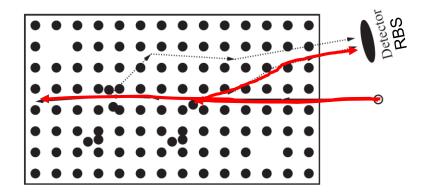
Detection of DEfects and HYDROgen by ion beam analysis in Channeling mode for fusion – DeHydroC

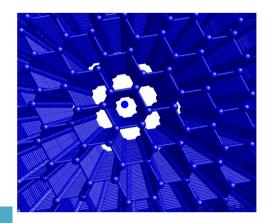
Project code: ENR-MAT-01-JSI

Monitoring meeting - activities 2022
7. February 2023

Sabina Markelj (PI) on behalf of the team

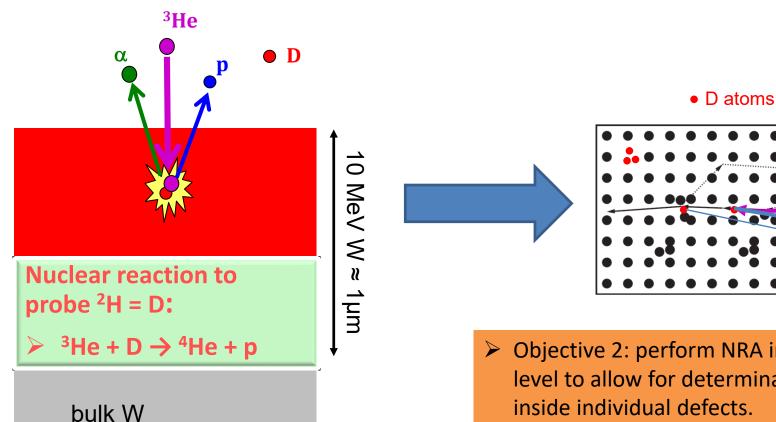
Team members




Benificiary	Names	Expertise	Contact	
	Sabina Markelj	HI interaction, sample irradiation, ion beam analysis (IBA)	sabina.markelj@ijs.si	
161	Esther Punzón Quijorna	Channelling, IBA (Post-doc)	esther.punzon-quijorna@ijs.si	
JSI	Mitja Kelemen	Construction, IBA, channelling (PhD, Post-doc)	mitja.kelemen@ijs.si	
	Matjaž Vencelj	Detectors	matjaz.vencelj@ijs.si	
	Primož Pelicon	IBA, construction, channelling	Primoz.Pelicon@ijs.si	
	Janez Zavašnik TEM/SEM TEM/SEM, sample Andreja Šestan preparation (PhD, Post-doc)		janez.zavasnik@ijs.si	
			andreja.sestan@ijs.si	
MPG	Thomas Schwarz- Selinger	Sample irradiation, IBA, HI interaction, TDS	Thomas.Schwarz- Selinger@ipp.mpg.de	
	Wolfgang Jacob	HI interaction, TDS	Wolfgang.Jacob@ipp.mpg.de	
	Flyura Djurabekova	Multiscale modelling, RBSADEC development	flyura.djurabekova@helsinki.fi	
UHEL	Xin Jin	Code development, MD, RBSADEC (PhD)	xin.jin@helsinki.fi	
	Ilja Makkonen	DFT for RBSADEC (Post-doc)	Ilja.makkonen@helsinki.fi	
	Tommy Ahlgren	IBA, HI interaction, MRE modelling	tommy.ahlgren@helsinki.fi	
	Kenichiro Mizohata	IBA, RBS-channelling	kenichiro.mizohata@helsinki.fi	
	Filip Tuomisto	PAS	filip.tuomisto@helsinki.fi	
CEA	Christian Grisolia	MRE modelling	Christian.GRISOLIA@cea.fr	
	Etienne Hodille	MRE modelling, MD	Etienne.HODILLE@cea.fr	

RBS channeling

<u>Channeling Rutherford Backscattering Spectroscopy</u> (C-RBS) is a well known method to measure disorder in materials due to ion irradiation



- Objective 1: Identify defects in <u>displacement-damaged</u> <u>tungsten</u> by C-RBS with help of microstructure analysis methods by:
 - Electron Microscopy (SEM, TEM, STEM,)
 - Positron Spectroscopy (PALS, DB-PAS)

Sensitive mainly to dislocation structure (loops, lines)

D retention analysis by nuclear reaction analysis (NRA)

Deuterium depth profiles - Analyzing protons from nuclear reaction D(³He,p)⁴He at different ³He energies from 700 keV up to 4.3 MeV

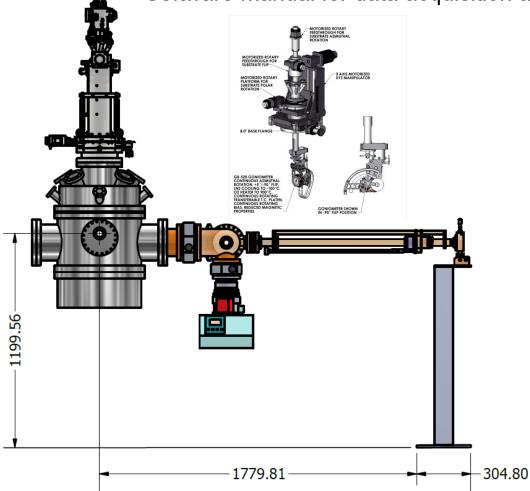
➤ Objective 2: perform NRA in channelling mode on a quantitative level to allow for determination of absolute deuterium amounts inside individual defects.

Deuterium trapped in open volume (vacancies, vacancy clusters, voids)

> C-RBS and C-NRA complementary for defect characterization

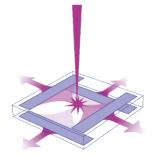
- > Task 1.1 Incorporation of the goniometer in the INSIBA experimental station JSI.
 - > D2.1 (Task 1.1) Commissioning of the goniometer with cooling and heating capabilities. (M1)
- > Task 1.2 Detection system for ion beam methods
 - > D2.2 (Task 1.2) Purchase of the PSD and acquisition system. (M2)
- Task 2.1 Production of samples with dominant defects in the material MPG and JSI.
 - > Second batch with well-defined displacement damage.
- ➤ Task 2.2 Characterization of defects –UHEL, JSI, MPG.
 - > D2.3 (Task 2.2) Microstructure data on samples with dominant defect type, first C-RBS spectra. (M4)
- ➤ Task 2.3 Simulation and interpretation of C-RBS spectra UHEL, CEA, JSI.
 - > D2.4 (Task 2.3) Incorporation of defect structures into RBSADEC. (M5)
- ➤ Task 3.1 Characterization of defects by D retention studies and MRE modelling JSI, MPG, CEA, UHEL.
 - > D2.5 (Task 3.1) Determine the de-trapping energies of D in defects and corelate with the defect characterization techniques. (M7)
- ➤ Task 3.3 Modelling of deuterium position in lattice/defect and identification of D position UHEL, CEA, JSI.
 - > D2.6 (Task 3.3) DFT calculations for D positions in defects, code development for C-NRA.

- > Task 1.1 Incorporation of the goniometer in the INSIBA experimental station JSI.
 - > D2.1 (Task 1.1) Commissioning of the goniometer with cooling and heating capabilities. (M1)
- > Task 1.2 Detection system for ion beam methods
 - > D2.2 (Task 1.2) Purchase of the PSD and acquisition system. (M2)
- ➤ Task 2.1 Production of samples with dominant defects in the material MPG and JSI.
 - > Second batch with well-defined displacement damage.
- > Task 2.2 Characterization of defects –UHEL, JSI, MPG.
 - > D2.3 (Task 2.2) Microstructure data on samples with dominant defect type, first C-RBS spectra. (M4)
- ➤ Task 2.3 Simulation and interpretation of C-RBS spectra UHEL, CEA, JSI.
 - > D2.4 (Task 2.3) Incorporation of defect structures into RBSADEC. (M5)
- ➤ Task 3.1 Characterization of defects by D retention studies and MRE modelling JSI, MPG, CEA, UHEL.
 - > D2.5 (Task 3.1) Determine the de-trapping energies of D in defects and corelate with the defect characterization techniques. (M7)
- ➤ Task 3.3 Modelling of deuterium position in lattice/defect and identification of D position UHEL, CEA, JSI.
 - > D2.6 (Task 3.3) DFT calculations for D positions in defects, code development for C-NRA.

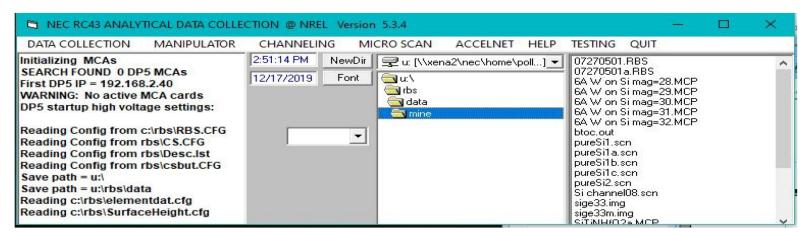

6-axis goniometer

✓ JSI – 6-axis goniometer specified, public call, final order at National Electrostatic Corp. (NEC) 08/2021 (Delays due to Covid-19 and Ukraine war): Partial delivery in October 2022 – full delivery promised for February 2023 but now postponed further - serious issue for 2023?

Software manual for data acquisition and goniometer


New cover for the vacuum chamber – mounted on the chamber

Detection system



 Position sensitive detector delivered by SiTeC electro optics – acquisition system being produced in house:

- Other options to increase the detection efficiency decrease analyzing time
 - Purchase large square NRA detector to cover larger solid angle
 - Have two NRA detectors each on one side at the same angle
- Detection system (without the detectors) and computer control for data acquisition and manipulator come with the goniometer

- > Task 1.1 Incorporation of the goniometer in the INSIBA experimental station JSI.
 - > D2.1 (Task 1.1) Commissioning of the goniometer with cooling and heating capabilities. (M1)
- > Task 1.2 Detection system for ion beam methods
 - > D2.2 (Task 1.2) Purchase of the PSD and acquisition system. (M2)
- ➤ Task 2.1 Production of samples with dominant defects in the material MPG and JSI.
 - Second batch with well-defined displacement damage.
- > Task 2.2 Characterization of defects –UHEL, JSI, MPG.
 - > D2.3 (Task 2.2) Microstructure data on samples with dominant defect type, first C-RBS spectra. (M4)
- > Task 2.3 Simulation and interpretation of C-RBS spectra UHEL, CEA, JSI.
 - > D2.4 (Task 2.3) Incorporation of defect structures into RBSADEC. (M5)
- ➤ Task 3.1 Characterization of defects by D retention studies and MRE modelling JSI, MPG, CEA, UHEL.
 - > D2.5 (Task 3.1) Determine the de-trapping energies of D in defects and corelate with the defect characterization techniques. (M7)
- ➤ Task 3.3 Modelling of deuterium position in lattice/defect and identification of D position UHEL, CEA, JSI.
 - > D2.6 (Task 3.3) DFT calculations for D positions in defects, code development for C-NRA.

Tungsten single crystals (111) - Samples prepared

Decided to go with only 10.8 MeV W ion irradiation, according to recent publications [Hu et al. JNM 556 (2021) 153175]

- Mainly single vacancies at room temperature
- Larger vacancy clusters at 773 K

Expectations based on:

Journal of Nuclear Materials 556 (2021) 153175

ELSEVIER

Contents lists available at ScienceDirect

Journal of Nuclear Materials

journal homepage: www.elsevier.com/locate/jnucmat

✓ For PAS/PALS analysis Helsinki (2022)

	ID	Definition
1)	78a	'Heavily damaged standard': 0.2dpa, 290K
2)	78h	'Single vacancies': 0.02 dpa, 290 K
3)	78e	'Big vacancy clusters': 0.2 dpa, 800 K
4)	78d	'Small vacancy clusters': 0.02 dpa, 800 K

Effect of purity on the vacancy defects induced in self-irradiated tungsten: A combination of PAS and TEM

Z. Hu^a, P. Desgardin^a, C. Genevois^a, J. Joseph^a, B. Décamps^b, R. Schäublin^c, M-F. Barthe^{a,*}

- ^a CEMHTI, CNRS, UPR3079, University of Orléans, F-45071 Orléans, France
- b IJCLab/CNRS, Paris Saclay University, France
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Switzerland

Positron annihilation lifetime spectroscopy

Lifetimes for non-irradiated samples

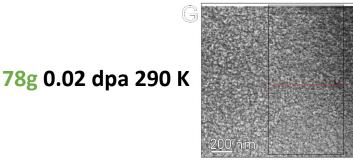
Samples	Positron lifetime (ps)
78a+78e	116
78d+78e	118
1700W+78a	110
78a+78d	108

The average positron lifetime in the non-irradiated sample has been determined as 108 ps;

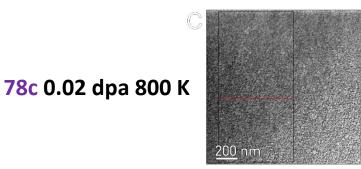
> Excellent crystalline quality

Lifetimes for irradiated samples

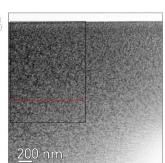
Samples	Damage dose (dpa)	Irradiation temperature
78a	0.2	RT
78h	0.02	RT
78d	0.02	800 K
78e	0.2	800 K


Samples	Positron average lifetime (ps)
78a+78h (RT)	~ 138 ps
78d+78e (800 K)	~ 200 ps
 Average nositro 	on lifetime increased with irradiation

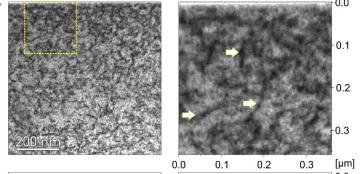
- Average positron lifetime increased with irradiation
- ➤ Shorter lifetime smaller defects (vacancies)
- Depth profiling planned for February 2023


78f 0.2 dpa 290 K

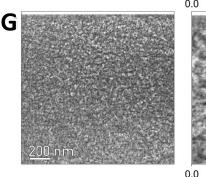
depth: (0.9-)1.1 μm



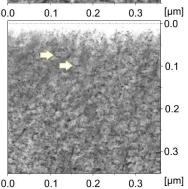
depth: 0.7 μm

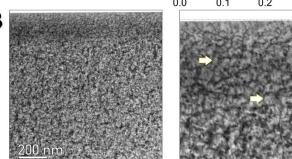

depth:

 $0.8 \mu m$


depth: ~1.1 – 1.2 μm

Dense network of dislocation lines (~100+ nm), which are already nicely visible at low-mag overview micrographs.


Directions of DL lines coincide with 110 > 111 > 11-2 > 111 planes.

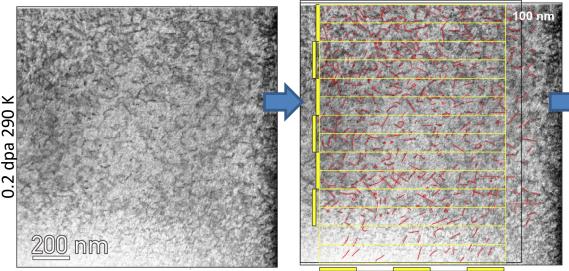

Only

Only very short dislocation lines (~ 20-30 nm) in <111>, with prevailing <u>U-shaped</u> loops around "black dots" (size ~10 nm)

Dislocations: mainly dots and several isolated lines (< 50 nm, in <111> direction). Dots are smaller, several nm.

0.0

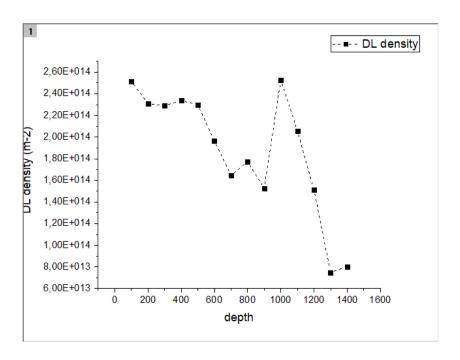
Several <u>dislocation lines</u> and <u>larger black dots</u>. DL lines are forming a network in <111>, forming square "polygons" with ~30 nm edge.



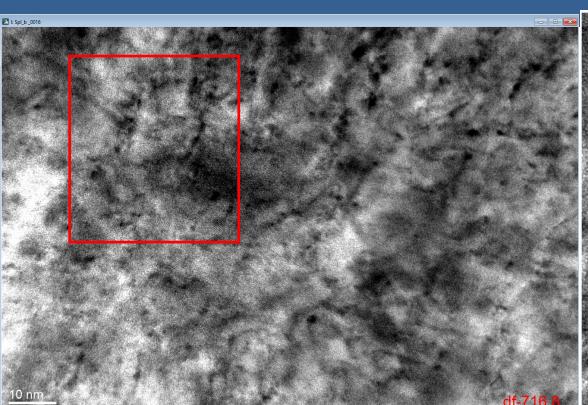
TEM analysis of SC W (111) – sample 0.2 dpa 300 K

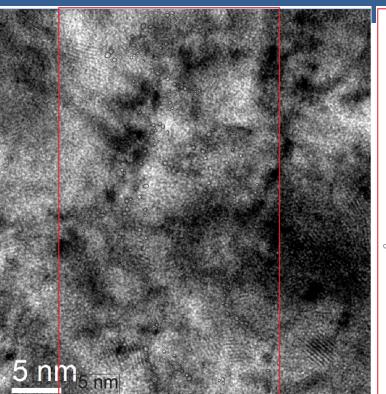
Average dislocation line density: 1.88*E14 m/m³

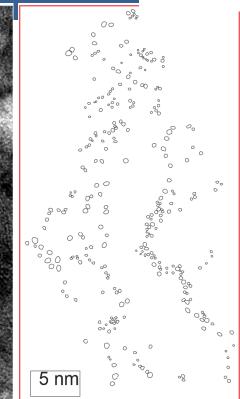
RANGE	No. of DLs	total length	1000 nm 1 [nm]:	density
1. 000-100 nm	N = 56	length:	1760.8	2.52*E14
2. 100-200 nm	N = 52	length:	1615.9	2.31*E14
3. 200-300 nm	N = 51	length:	1604.0	2.29*E14
4. 300-400 nm	N = 53	length:	1636.1	2.34*E14
5. 400-500 nm	N = 46	length:	1608.0	2.30*E14
6. 500-600 nm	N = 40	length:	1376.0	1.97*E14
7. 600-700 nm	N = 38	length:	1152.7	1.65*E14
8. 700-800 nm	N = 40	length:	1240.8	1.77*E14
9. 800-900 nm	N = 29	length:	1069.3	1.53*E14
10. 900-1000 nm	N = 38	length:	1769.9	2.53*E14
11. 1000-1100 nm	N = 34	length:	1440.3	2.06*E14
12. 1100-1200 nm	N = 31	length:	1057.1	1.51*E14
13. 1200-1300 nm	N = 12	length:	524.4	7.49*E13
14. 1300-1400 nm	N = 10	length:	562.7	8.04*E13

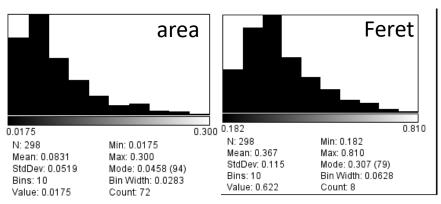


1, 1, (/ / ,


1/1/1/11



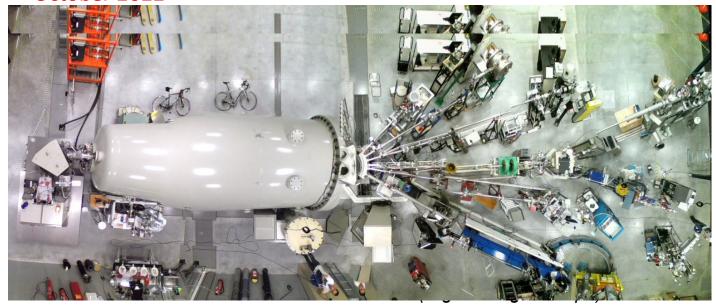

TEM analysis of sample "78b", 0.2 dpa 800 K (voids?)

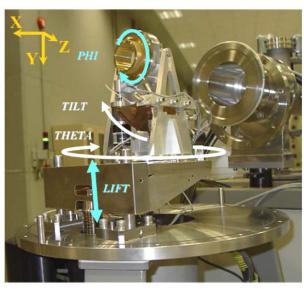


N = 298

- mean diameter of 0.37 nm
 (resolution ≈ 1.2 Å => 0.12 nm)
- void density 5x10²⁴ m⁻³
 (only rough estimation from 1 example & limited area!)

Analysis of irradiated samples by C-RBS in Madrid



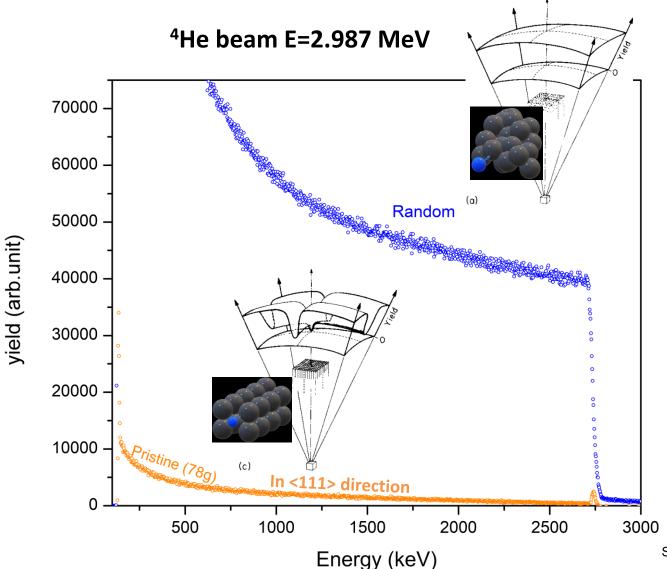

Second visit of JSI team to CMAM (Centre for Micro Analysis of Materials), UAM (Madrid.) for C-RBS measurements in

October 2022



5MV Accelerator Cockcroft-Walton (High Voltage Europe)

With the goal to differentiate defect structures in the channelling-RBS spectra: we have performed a multi-energy axial channeling study in order to obtain additional information about the nature of the defects.

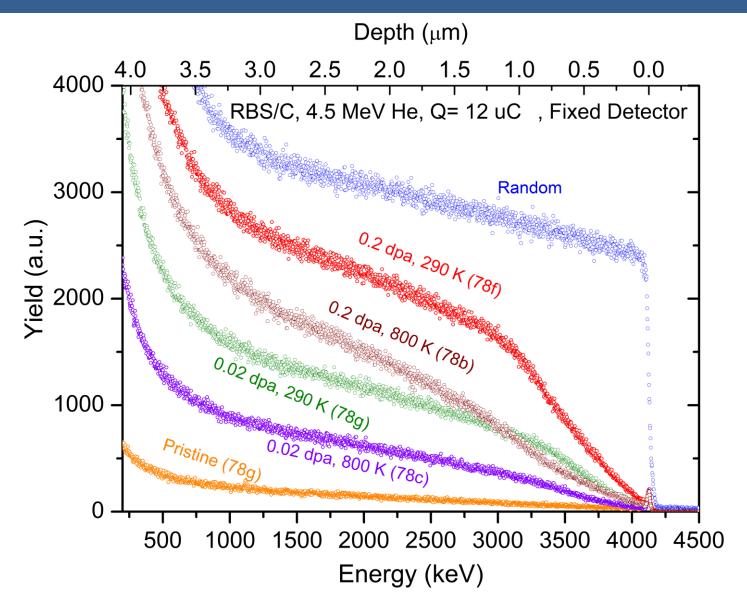

3 angles goniometer (no heating)
(Panmure Instruments, UK)

Analysis of irradiated samples by C-RBS – measurements

Random = $\Sigma 100$ spectra (5 μ C) – nonchanneling

<111> channelling direction

78f heavily damaged standard: 0.2dpa 290 K 78g single vacancies: 0.02 dpa 290 K


78c small vacancy clusters: 0.02 dpa 800 K 78b big vacancy clusters: 0.2 dpa 800 K

78g pristine

✓ Starting material (pristine sample) has a very good crystallinity

Energy spectra @ 4.5 MeV

Random = $\Sigma 100$ spectra – nonchanneling

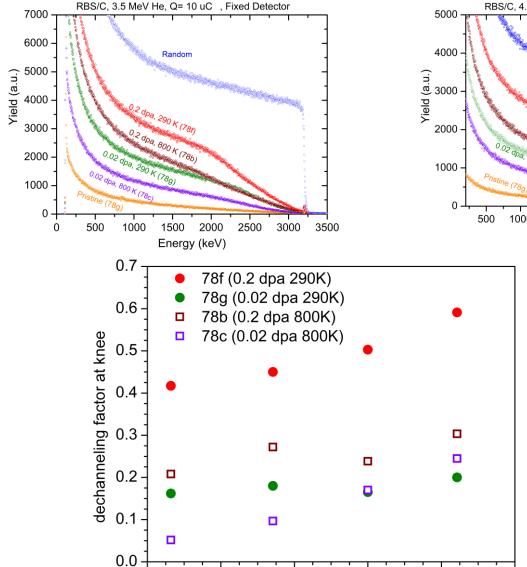
<111> channelling direction

78f heavily damaged standard: 0.2dpa 290 K

78g single vacancies: 0.02 dpa 290 K

78c small vacancy clusters: 0.02 dpa 800 K

78b big vacancy clusters: 0.2 dpa 800 K


78g pristine

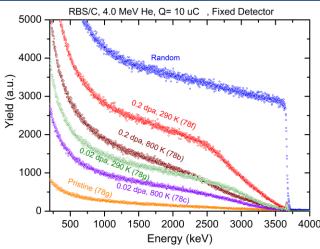
Ratio of the signal between Pristine/Random after the surface peak = 1.3 %

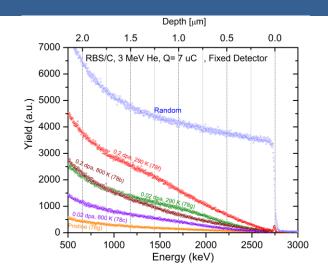
- > Excellent crystallinity of the sample
- We have observed differences between the irradiation damage treatments

Energy spectra @ other energies

2.0

1.9


Energy^{1/2} (MeV^{1/2})


1.8

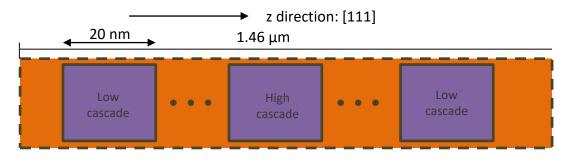
1.7

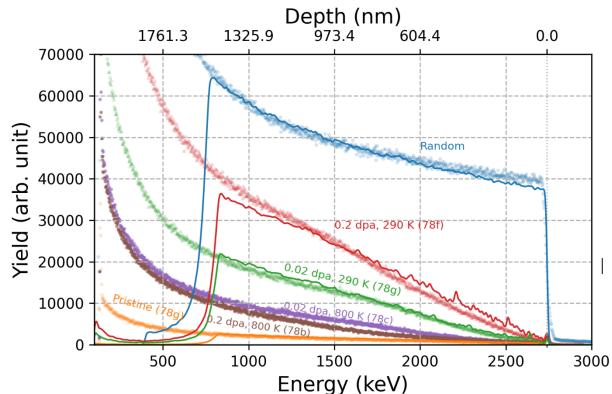
2.1

2.2

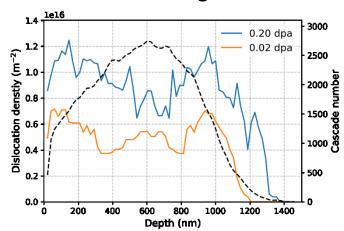
Dechanneling factor as a function of energy

- > 78f positive slope extended defects dislocation lines (TEM)
- > 78g no slope discontinuous defects small dislocation loops (TEM)
- > 78b no slope
- > 78c positive slope
- Following: FELDMAN, MATERIALS ANALYSIS BY ION CHANNELING. Submicron Crystallography, 1982, Academic press

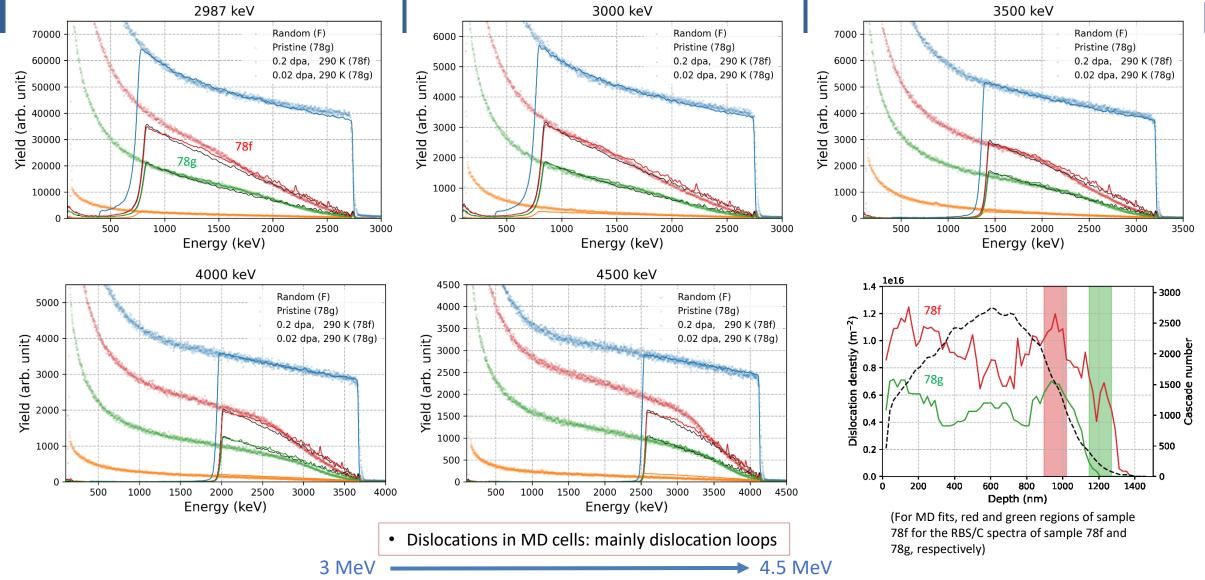



- > Task 1.1 Incorporation of the goniometer in the INSIBA experimental station JSI.
 - > **D2.1 (Task 1.1)** Commissioning of the goniometer with cooling and heating capabilities. (M1)
- > Task 1.2 Detection system for ion beam methods
 - > D2.2 (Task 1.2) Purchase of the PSD and acquisition system. (M2)
- ➤ Task 2.1 Production of samples with dominant defects in the material MPG and JSI.
 - > Second batch with well-defined displacement damage.
- ➤ Task 2.2 Characterization of defects –UHEL, JSI, MPG.
 - > D2.3 (Task 2.2) Microstructure data on samples with dominant defect type, first C-RBS spectra. (M4)
- > Task 2.3 Simulation and interpretation of C-RBS spectra UHEL, CEA, JSI.
 - > D2.4 (Task 2.3) Incorporation of defect structures into RBSADEC. (M5)
- ➤ Task 3.1 Characterization of defects by D retention studies and MRE modelling JSI, MPG, CEA, UHEL.
 - > D2.5 (Task 3.1) Determine the de-trapping energies of D in defects and corelate with the defect characterization techniques. (M7)
- ➤ Task 3.3 Modelling of deuterium position in lattice/defect and identification of D position UHEL, CEA, JSI.
 - > D2.6 (Task 3.3) DFT calculations for D positions in defects, code development for C-NRA.

Calculations and fits of C-RBS spectra by RBSADEC simulation using Molecular Dynamics cells

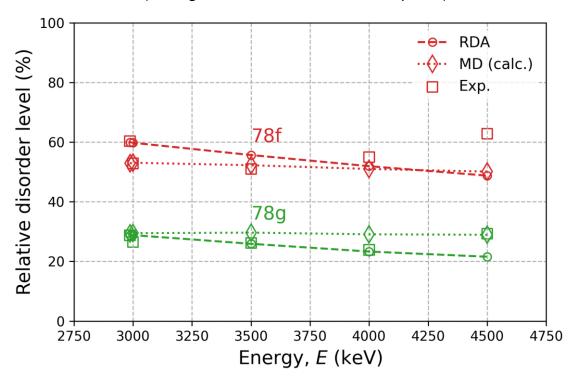


Take real defect structures from MD

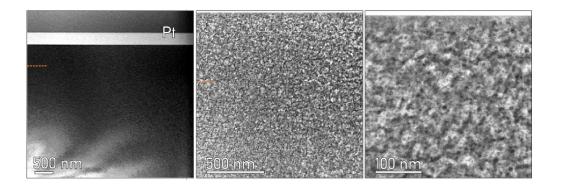

- Generation of defects in MD cells
 - ☐ 10 keV cascades
 - ☐ Number of collision cascade ←→ displacement damage dose (NRT)
- Connection of W MD cells:
- ➤ The SRIM dpa depth profile is transformed to a collision cascade number profile.
- Then MD boxes (70) with the corresponding cascade number are stacked along the direction of depth.

➤ Good agreement between simulation and experiment results (especially sample 78g)

C-RBS spectra as a function of energy (MD calculations and fits)



- Sample 78f: simulation spectra becomes smaller compared to experiments with a higher energy
- Sample 78g: simulation spectra follows experiments well


C-RBS signals as a function of energy

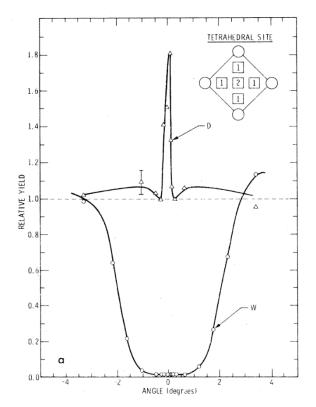
(ROI region of disorder: after the "knee point")

- Sample 78f (exp): increases with E
- Sample 78g (exp): roughly constant
 - RDA: decreases with E
- MD (dislocation loops): almost constant
- Sample 78f (exp): neither RDAs nor dislocation loops in the MD cells (should be larger loops or lines as observed in previous TEM experiments)
 - Sample 78g (exp): Dislocation loops in the MD cells
 TEM images of 78g:
 dislocation loops were observed

- > Task 1.1 Incorporation of the goniometer in the INSIBA experimental station JSI.
 - > D2.1 (Task 1.1) Commissioning of the goniometer with cooling and heating capabilities. (M1)
- > Task 1.2 Detection system for ion beam methods
 - > D2.2 (Task 1.2) Purchase of the PSD and acquisition system. (M2)
- ➤ Task 2.1 Production of samples with dominant defects in the material MPG and JSI.
 - > Second batch with well-defined displacement damage.
- ➤ Task 2.2 Characterization of defects –UHEL, JSI, MPG.
 - > D2.3 (Task 2.2) Microstructure data on samples with dominant defect type, first C-RBS spectra. (M4)
- ➤ Task 2.3 Simulation and interpretation of C-RBS spectra UHEL, CEA, JSI.
 - > D2.4 (Task 2.3) Incorporation of defect structures into RBSADEC. (M5)
- ➤ Task 3.1 Characterization of defects by D retention studies and MRE modelling JSI, MPG, CEA, UHEL.
 - > D2.5 (Task 3.1) Determine the de-trapping energies of D in defects and corelate with the defect characterization techniques. (M7)
- ➤ Task 3.3 Modelling of deuterium position in lattice/defect and identification of D position UHEL, CEA, JSI.
 - > D2.6 (Task 3.3) DFT calculations for D positions in defects, code development for C-NRA.

Development of C-NRA simulation and detection of D by RBSADEC code

Experiments in literature

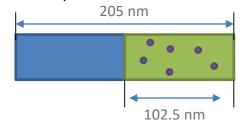

■ Incident ions: 750 keV ³He ions

Nuclear reaction: D (³He, p) ⁴He

Detector angle: 135 degree

Angular scan: around <100> axis of W

D location: tetrahedral sites

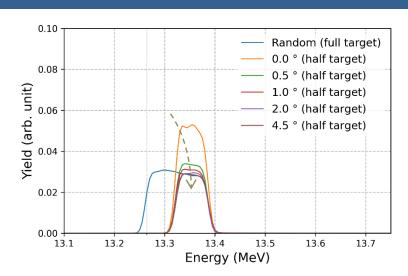


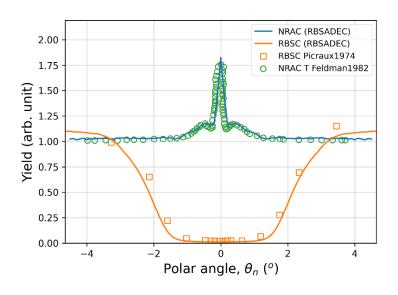
(S. Picraux, Phys. Rev. Lett., 33, 1974)

☐ Incorporation of C-NRA into RBSADEC

RBS/C: a pristine W target

NRA/C:




- The first half is pristine: to establish a stable distribution of incident ions
- The second half : 0.1 % of D at tetrahedral sites

Comparison of C-NRA simulation with literature

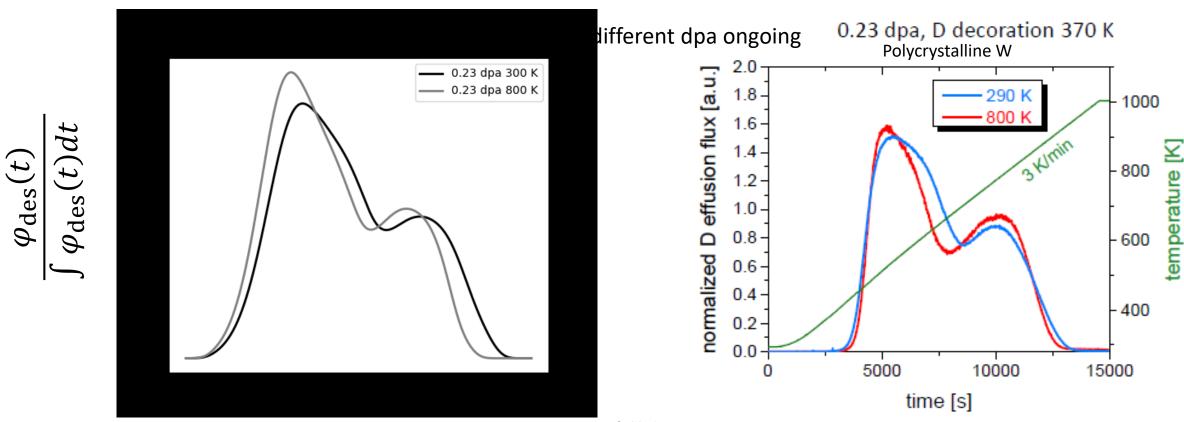
(L. Feldman et al, Materials Analysis by Ion Channeling, 1982)

 Different simulation result compared to experiment – not unexpected

C-NRA simulations, fit of experimental spectra

- > Task 1.1 Incorporation of the goniometer in the INSIBA experimental station JSI.
 - > D2.1 (Task 1.1) Commissioning of the goniometer with cooling and heating capabilities. (M1)
- > Task 1.2 Detection system for ion beam methods
 - > D2.2 (Task 1.2) Purchase of the PSD and acquisition system. (M2)
- Task 2.1 Production of samples with dominant defects in the material MPG and JSI.
 - > Second batch with well-defined displacement damage.
- > Task 2.2 Characterization of defects –UHEL, JSI, MPG.
 - > D2.3 (Task 2.2) Microstructure data on samples with dominant defect type, first C-RBS spectra. (M4)
- ➤ Task 2.3 Simulation and interpretation of C-RBS spectra UHEL, CEA, JSI.
 - > D2.4 (Task 2.3) Incorporation of defect structures into RBSADEC. (M5)
- ➤ Task 3.1 Characterization of defects by D retention studies and MRE modelling JSI, MPG, CEA, UHEL.
 - > D2.5 (Task 3.1) Determine the de-trapping energies of D in defects and corelate with the defect characterization techniques. (M7)
- ➤ Task 3.3 Modelling of deuterium position in lattice/defect and identification of D position UHEL, CEA, JSI.
 - > D2.6 (Task 3.3) DFT calculations for D positions in defects, code development for C-NRA.

Macroscopic Rate Equation (MRE) modelling with MHIMS code: Simulated TDS spectra

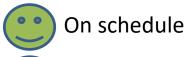


- ☐ From fitting the D depth profiles and TDS spectra we obtain the information of defect concentration and de-trapping energies for different damaging scenarios
- ☐ Input for RBSADEC code / Compare to MD simulations
 - □ Comparison of simulated and experimental TDS spectra between damaging at 300 K and damaging at 800 K

Macroscopic Rate Equation (MRE) modelling: Trapping sites in the simulations

D trapping energies and defect concentrations from M. Pečovnik's papers (NF 60 (2020) 036024 and JNM 550 (2021))

	Defect type	Detrapping energies	Trap concentration (at.fr)
	Intrinsic trap I	0.85 eV	2×10^{-5}
	Intrinsic trap II	1.00 eV	2×10^{-5}
	Type I: monovacancies	5 levels: 1.08 eV – 1.46 eV	0.220×10^{-2} at 300K ($\eta = 1.5 \times 10^{9}$) 0.070×10^{-2} at 800K ($\eta = 0.5 \times 10^{9}$)
	Type II: Medium size vacancy clusters (~V ₆)	2 levels 1.68 – 1.86 eV	0.290×10^{-2} at 300 K ($\eta = 1.5 \times 10^{9}$) 0.110×10^{-2} at 800 K ($\eta = 0.5 \times 10^{9}$)
	Type III: Big vacancy clusters (⇔ Surfaces)	2.05 eV	0.050×10^{-2} at 300 K ($\eta = 1.5 \times 10^{9}$) 0.005×10^{-2} at 800 K ($\eta = 0.5 \times 10^{9}$)
⇒ <u>d</u> r	$\frac{\mathbf{n}_{i}(x, t)}{dt} = \frac{\Gamma \eta \Theta(x)}{\rho} \left[1 - \frac{1}{\rho} \right]$	$\frac{\mathbf{n_i}(x, t)}{\mathbf{n_{i,max}}}$	


Management

- WP 4 management four zoom meetings organized with the team members, details and presentations available on Indico, links to indico sites on Wiki page https://wiki.euro-fusion.org/wiki/Project_No4
- February 2022
- June 2022
- September 2022
- December 2022
- Conferences:
 - Two contributions at PFMC, May 2023
 - Two contributions at ICFRM, October 2023
- Papers:
 - 1 manuscripts in preparation
 - Accepted in December 2022: Jin et al. Effect of lattice voids on Rutherford backscattering dechanneling in tungsten, J. Phys. D: Appl. Phys. 56 (2023) 065303, https://doi.org/10.1088/1361-6463/acad12

➤ Task 1.1 Incorporation of the goniometer in the INSIBA experimental station – JSI.

Delayed

- > D2.1 (Task 1.1) Commissioning of the goniometer with cooling and heating capabilities. (M1)
- > Task 1.2 Detection system for ion beam methods
 - > D2.2 (Task 1.2) Purchase of the PSD and acquisition system. (M2)
- ➤ Task 2.1 Production of samples with dominant defects in the material MPG and JSI.
 - > Second batch with well-defined displacement damage.
- ➤ Task 2.2 Characterization of defects –UHEL, JSI, MPG.
 - > D2.3 (Task 2.2) Microstructure data on samples with dominant defect type, first C-RBS spectra. (M4)
- ➤ Task 2.3 Simulation and interpretation of C-RBS spectra UHEL, CEA, JSI.
 - > D2.4 (Task 2.3) Incorporation of defect structures into RBSADEC. (M5)
- Task 3.1 Characterization of defects by D retention studies and MRE modelling JSI, MPG, CEA, UHEL.
 - D2.5 (Task 3.1) Determine the de-trapping energies of D in defects and corelate with the defect characterization techniques. (M7)
- ➤ Task 3.3 Modelling of deuterium position in lattice/defect and identification of D position UHEL, CEA, JSI.
 - > D2.6 (Task 3.3) DFT calculations for D positions in defects, code development for C-NRA.

Tasks and objectives in 2023

- > Task 1.1 Incorporation of the goniometer in the INSIBA experimental station JSI.
- > Task 1.2 Detection system for ion beam methods
 - **❖** O3.1 (Task 1.1)) C-RBS spectra obtained with new channeling set-up. (D1)
- > Task 2.1 Production of samples with dominant defects in the material MPG and JSI.
- Task 2.2 Characterization of defects –UHEL, JSI, MPG.
- Task 2.3 Simulation and interpretation of C-RBS spectra UHEL, CEA, JSI.
 - **❖** O3.2 (Task 2.2, 2.3, 3.1) Defect identification by C-RBS and correlation to TEM and PAS measurements – report. (D2)
- > Task 2.4 In-situ C-RBS and sample heating JSI
 - **❖** O3.3 (Task 2.4) In-situ sample heating in INSIBA-C. (M6)
- > Task 3.1 Characterization of defects by D retention studies and MRE modelling JSI, MPG, CEA, UHEL.
- > Task 3.2 Development of C-NRA method JSI, UHEL, MPG.
 - **❖** O3.4 (Task 3.1 and Task 3.2) Detection of deuterium by C-NRA method. (M8)
- > Task 3.3 Modelling of deuterium position in lattice/defect and identification of D position UHEL, CEA, JSI.
 - **❖** O3.5 (Task 3.3) Incorporation of C-NRA in RBSADEC. (M9)