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Project overview (and status) ’®)
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Overview complete project
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Main objective: MIMO control of the divertor state using multiple MANTIS camera’s
Sub-objectives

Real-time (millisecond range) tomographic reconstruction of MANTIS images.

v'Is achieved using a machine learning accelerated approach (2 ms)
v' Awaiting a new GPU for implementation (<2 ms) -> new GPU tested and largely integrated
v

Aim for an experimental demonstration before 2023 (not on tokamak)

Real-time inference of recombination, ionization and impurity radiation power losses
v

v
v

Basic version for inference of ionization, recombination, and divertor Tecyon Nelectron, No from filtered camera images [1]

Further development necessary to improve Bayesian inference and validate results, e.g., ionization
Aim for an experimental demonstration before 2023 (not on tokamak)

Control-oriented modelling for MIMO exhaust control
v

1 dimensional dynamic SOL Model DIV1D was benchmarked against SOLPS-ITER in steady-state [2]
O Ongoing benchmark against dynamic experiments

MIMO system identification + feedback control (and integration in SCD)
v' MIMO sys.id. and control of line-averaged electron density and NIl emission front position [3]
O Repeat of above with real-time inferred processes (ionization, etc.) from MANTIS camera’s -> September 2023
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Recommendations from committee
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* Itshould be interesting to indicate the expected ways to obtain a real-time control
on 1 ms time scale and the possible issues encountered to reach it before the end of
the project -> detail explanation next slide

* Precise the possible issues to apply MiMO real-time control on different devices such
as W7X, JT60-SA, ITER, ... -> very valid point but a deep and complicated question
where a clear distinction needs to made between fusion producing devices (ITER,
DEMO) and W7X and JT60SA for the exhaust, preparing a publication on this topic

Many thanks for the input!
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Real-time control time scales
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1 ms is and NEVER has been a target for the feedback control scheme
TV analogy: refresh rate vs. frame rate:

TV’s refresh rate 50 Hz (maximum frames to be displayed by TV), blue-ray 25 Hz how many
new frames are shows

Overall control system performance is determined by slowest time-scales and loop-delay:
» 800 Hz inherent frame rate (MANTIS) camera’s
(Camera’s 1.25 ms delay, 2.6 ms processing, 0.5 ms communication)
» 50 Hz bandwidth of the gas-valve at TCV (deadtime: signal to action ~ 1 ms)
» ~100 Hz observable plasma dynamics due to signal-to-noise ratio (plasma dynamics)

4

D)

)

* Rule of thumb: sampling rate (1 ms) X 810 faster than bandwidth (100 Hz)

-1
loop-delay 74, determines bandwidth ~ (ZﬂTloop)
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Real-time control time scales (cont’d) Q)
% Rule of thumb for bandwidth (real-time control time-scale): A\ attenuation

* sampling rate X 8710 faster than bandwidth 0dB
* bandwidth (BW) ~ (anloop)_l 6dB|— — — —

I
Current set-up theoretical bandwidth: |
> Tioop =CS +IP + COM +GV ~ bandwidth I
> Tipop =1.25+26+05+1 ~30Hz |
¥ Tipop =1.25+0/1+05+1 ~ 57.9 Hz (42 Hz) — >
> Tiop =125+2.6+0.5 +0 ~ 37 Hz (logical first step)

frequency

reference -> measured

Practical bandwidths
» SISO exhaust controllers TCV bandwidth ~ 8 Hz -> MIMO normally slower, we aim at ~ 10 Hz
» Other devices even slower (due to gas-pipes): AUG ~ 1 Hz, ITER > 0.1 Hz

Tioop €an only be broken by different control, e.g., model predictive control!
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ENR WPs overview and progess Q)

Main goal: setting up for MIMO control with different MANTIS camera’s

P1 (E1[A MANTIS development to determine loss-processes in 2D
finished)
development only

in terms of P3

Detachment analysis, scenario selection, setting control requirements

P3 (ELEIW'A Conversion from off-line to real-time camera analysis (incl. machine learning)
finished)

P4 (ETGENA MIMO system identification
finished

Dynamic modelling for MIMO-control

MIMO feed-back control (and integration)
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WP3: Offline to real-time analysis conversion @)

Plasma emission

~5 CPUs per frame

Tomographic inversions

~4000 CPUs per time step

-~
4

Plasma emission

Machine learning for
S tomographic inversions
~0.002 CPUs per frame

O DIFFER EPFL
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Bayesian Plasma
parameter inference [1]

Machine learning for
plasma parameter
inference

~0.03 CPUs per time step
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Offline to real-time analysis conversion: Parameter inference (®)

=

= This work focuses on majority Deuterium plasmas, since
power exhaust its only relevant in Deuterium plasmas.
Helium its also taken in consideration, since it is present at
TCV and its present in reactor grade plasmas

inputs outputs 'E « For Hydrogen the ADAS CRM is used, and for Helium the
'Dc\ Goto CRM. Given the research question, the objective is
’ to develop an inverse mapping of these models

= This work uses neural networks (NN) since they are
universal approximators capable of learning complex non
linear relationships provided they are supplied enough
representative data

= Arelevant parameter space is taken into account given the
scenarios expected at TCV

= This approach is backup by similar works in which NN
were able to learn inverse mappings of CRM, although for
accelerating simulations and not real-time diagnosis [ 6, 7]

[6] Mathews, A., et al. "Deep modeling of plasma and neutral fluctuations from gas puff turbulence imaging." Review of Scientific Instruments 93.6 (2022).

[7] Vander Wal, Michael D., Ryan G. McClarren, and Kelli D. Humbird. "Neural network surrogate models for absorptivity and emissivity spectra of multiple elements.” Machine
Learning with Applications 8 (2022).
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Offline to real-time analysis conversion: Parameter inference ()
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Hardware and software implementation for real-time analysis (@)

Strategy:

. Move our current CPU processing into a GPU for performance in
ML applications.

. Move from our in-house developed C/C++ code to the FAE MARTe2
framework for maintainability and compatibility with other fusion
experiments.

e Incorporate Nvidia Triton Inference Server to divide a single
physical GPU into n parallel virtual GPUs.

GPU requirements:

e Supports remote direct memory access (RDMA) for the
cameras to stream directly to the GPU

e Atleast 1Gb of GPU RAM for 1s of frames per camera, at least
20Gb total.

e  Sufficiently powerful to deliver the required performance
under the Nvidia Triton Inference Server

e We are working with the Nvidia Science Team to test our
networks on their servers and determine the most suitable
GPU for our applications. Currently deciding between Nvidia
V100 and A100 models (up to 15k€)

¢ Implementation and testing with MANTIS cameras.

e Aiming for the first experiments by-the-end-ef2022erthe
second half of 2023
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Hardware and software implementation for real-time analysis

Strategy:

. Move our current CPU processing into a GPU for performance in
ML applications.

. Move from our in-house developed C/C++ code to the FAE MARTe2
framework for maintainability and compatibility with other fusion
experiments.

e Incorporate Nvidia Triton Inference Server to divide a single

physical GPU into n parallel virtual GPUs. AIO0EOCE FEIE AICOEOGE SAM

FP64 9.7 TFLOPS
GPU requirements: FP64 Tensor Core 19.5 TFLOPS
e Supports remote direct memory access (RDMA) for the
cameras to stream directly to the GPU FP32 19.5 TFLOPS
e Atleast 1Gb of GPU RAM for 1s of frames per camera, at least
20Gb total. Tensor Float 32 (TF32) 156 TFLOPS | 312 TFLOPS*
e  Sufficiently powerful to deliver the required performance
under the Nvidia Triton Inference Server BFLOAT16 Tensor Core 312 TFLOPS | 624 TFLOPS*
FP16 Tensor Core 312 TFLOPS | 624 TFLOPS*
e We are working with the Nvidia Science Team to test our INT8 Tensor Core 624 TOPS | 1248 TOPS*
networks on their servers and determine the most suitable
GPU for our applications. Currently deciding between Nvidia GPU Memory 80GB HBM2e 80GB HBM2e
V100 and A100 models (up to 15k€)
. IrT1pI.ementat|on. and testl.ng with MANTIS cameras. GPU Memory Bandwidth 1,935 GB/s 2,039 GBfs
e Aiming for the first experiments by-the-end-ef2022erthe
second half of 2023 Max Thermal Design Power (TDP) 300W 400W ***

Multi-Instance GPU Up to 7 MIGs @ 10GB Up to 7 MIGs @ 10GB



MANTIS 5 - a testbed for GPU computing development @
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. . . . ASUS Prime Z690-P
The default server rack cooling fan was insufficient to Seasonic Focus GX 1000 W

Kingston FURY Beast RGB - 64GB
Intel Core i9-12900K LGA 1700, 3.20 GHz, 16 -Core
Rocky Linux 8.6

prevent an idle thermal crash (95 deg C).

An additional fan at the card’s outlet and a streaming funnel
combined with a directly mounted fan was enough to
prevent a thermal crash when idle (70/300W) while still
thermally throttling (85 deg C).

0OD1238-12HBVXC
DC 120x120x38mm

12V, 384m3/h, 50W
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MANTIS 5 - a testbed for GPU computing development
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The default server rack cooling fan was insufficient to ASUS Prime 2690-P

) Seasonic Focus GX 1000 W
prevent an idle thermal crash (95 deg C). Kingston FURY Beast RGB - 64GB

Intel Core i9-12900K LGA 1700, 3.20 GHz, 16 -Core

An additional fan at the card’s outlet and a streaming funnel Rocky Linux 8.6

combined with a directly mounted fan was enough to
prevent a thermal crash when idle (70/300W) while still
thermally throttling (85 deg C).

Every 2.8s: nvidia-smi

I @ NVIDIA Al8@
I NAA - 35C P B i 2% Default |

Disabled |

PID Type Process name

0OD1238-12HBVXC

DC 120x120x38mm 12V 384m3h

50W...
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Offline to real-time analysis conversion

~0.02 GPUs per frame ~30 GPUs per frame

Plasma emission

~5 CPUs per frame ~4000 CPUs per time step
. . Bayesian Plasma
Tomographic inversions parameter inference [1] Iratet Rrate
P

Plasma emission

Machine learning for Machine learning for
4 — [ - ing . — p|asma parameter — I R
- tomographic inversions . rater ‘‘*rate
inference
4
~0.002 GPU fi ~0.0006 GPU fi 6
s per frame s per frame 2 . ms

Tested with Nvidia A100

0.7 0.8 09
R[m]
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Hardware and software implementation for real-time analysis (@)
Does the GPU Direct Memory Access work? Q/ @‘ PCle gen 2x2§134
¢ Yes, | tested it on Mantis2b PC.
Fibre 1 PCle
Can we perform the real-time tomographic inversion? Q/ optics ¢ Gen 3x8
Can we perform the real-time parameter inference? Q/ 8 v A |
_ i iﬂ'ﬂ]_a :
Can we setup parallel processing streams on the GPU Q/ = . S0
using Multi-Instance GPU? S| L4 I
o ______L______________L______] !
Can we perform operations within a <1ms jitter to Q/ GPUn CPU
ensure real-time performance? M AeaG
.
1]
L SCD TCV
RFM o
There are no known obstacles to 0!4—#
. ) . . Gas valves
performing integration for real-time ' — |

control but further development is N — °
. D Full frame u Metada.ta I Camera settings
ta klng p|ace [J  Cropped frame Przztfsj;ng [ Valve waveform

l Reflective memory



WP2/6: Real-time control of the heat-exhaust®)

Controller
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What do we wish to control?

e Start with control of total | ... and R__._ in divertor

rate rate

* Analyse response of T, n,, ng, | s R.4te tO actuators

rate’ rate

* |dentify possible ‘region of interests’ to define the exhaust solution in
other parameters -> improved control parameters, go from 0D to 1D

* Combine with e.g. FIR: extend to larger Multi-input / Multi-output schemes



WPG6: Synthetic spectroscopy for exhaust in DEMO

* Spectroscopy on DEMO (WPDC/WPENR)
* Different lines-of-sight configuration than currently available: synthetic diagnostic
using MANTIS

First optical

DEMO Baseline 2017 (Cross section PLANE XZ Y=0)
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Where do we stand now: deliverables?
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Made deliverables (from 2022):

. Simple-MIMO identification demonstration: Demonstrate MIMO system identification algorithms developed in this proposal
for the simplified case of D2 and N2. (initial testing RT-alg.).

Deliverables (from 2023) almost made:

. Loss-process measurements in 2D: Quantitative real-time algorithms for the observation of the loss-processes (based on
MANTIS + other diagnostics): Successful first publication on off-line quantitate modelling, heavy investment in ML algorithms to
speed up, implementation on hardware GPU progressing well

. Dynamic detachment models: Control-oriented (hybrid) models useful for time-dependent detachment simulations and
control development: First publication G.L. Derks, static maps with DIV1D, dynamic models based on data also ready, improved
model under development

Next to making progress on the project (presentations/publications being prepared):

Just submitted: L.van Leeuwen et al., Machine learning accelerated tomographic reconstruction for multispectral imaging on TCV, Nuclear Fusion

In preparation: Machine learning accelerated plasma parameter inference for multispectral imaging on TCV, J. Caballero et al., Plasma Physics Controlled Fusion
Multi-input multi-output control of the plasma exhaust and line-integrated electron density in a tokamak plasma, J.T.W. Koenders, Nuclear Fusion

Conferences: Application of a sparse sensor placement technique to the limited availability of experimental data in DEMO, J. Raukema et al. (ECPD)
Multispectral Advanced Narrowband Tokamak Imaging Systems (MANTIS), A Perek et al. (ECPD)

Multivariable feedback control of radiative loss-processes using multi-spectral imaging, M. van Berkel et al. (IAEA FEC in prep.)
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Contributions outside ENR (®

» ENR contributes to MAST-U SXD multi-wave imaging

» New GPU methods ALSO speed up calculations for post-processing,
inter-shot inference is now possible for WPTE campaign physics
studies

» Jointly with WPDC we develop synthetic diagnostics and MANTIS

can be used for DEMO control like sightlines experiments

» Full plasma diagnostics 3 MANTIS camera’s (next slide)



Thank you for your attention

3 MANTIS set-up at TCV
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