INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES

On new results from high density plasma sheath modelling

D. Tskhakaya and IPP CAS PWIE team

Institute of Plasma Physics of the CAS, Prague, Czech Republic

WP-PWIE SP D report

Status of task: kinetic modelling of the plasma sheath and SOL

Completed tasks

- BIT1 updated: DCSM for ionization and recombination (relevant also for TSVVs: 3, 4 and 7)
- SPICE2 updated: radially nonuniform injection
- ITER and DEMO-relevant plasma sheath modelling
- Modelling of AUG, JET and ITER inter-ELM and AUG and JET ELM-ing SOLs

Main target

To study plasma sheath properties for high density divertor: boundary conditions, divertor particle and heat loads, W sputtering and thermionic emission rates

Ongoing tasks

- DEMO-relevant plasma sheath including DCSM recombination
- AUG, JET and ITER ELM-ing SOL with DCSM
- > W redeposition rates in collisional sheath
- Multi-dimensional plasma sheath modelling

Numerical tools used

BIT1, SPICE2 and 3 PIC (+MC)

Motivation

- Explanation of results from 2021
- Discussion on neutral particle fluxes
- conclusions

	Divertor sheath	
	n _{max} [10 ²⁰ m ⁻³]	T _{min} [eV]
COMPASS	0.3	10
ASDEX-U	2	1
JET	5	1
ITER	50	0.5
EU DEMO	~100	0.2 (?)

Divertor plasma sheath in next generation tokamaks will be collisional

Plasma sheath theory

Collisionless magnetised plasma sheath^[1]

 $s = x / \cos \psi$

^[1] Chodura Phys. PWI Contr. Fus. 1984

$\Gamma_{i} \sim M_{\parallel} n c_{s} \quad \text{- Plasma flux density}$ $c_{s} = \sqrt{\left(T_{i} + Z_{i} T_{e}\right) / m_{i}}, \quad M_{\parallel} = V_{\parallel,i} / c_{s} = 1$

 $q_w \sim \gamma \Gamma_i T_e$ - Heat flux density $\gamma \approx 2+6$

 $\Delta \varphi \sim T_e \ln \left(M_{\parallel} \sqrt{m_e / m_i} \right)$ - Potential drop

- Plasma profiles in the sheath used for prompt redeposition modelling
- Energy and angular Distribution of absorbed particles – used for PWI study

Description of simulation

- > Nonlinear model for Plasma, impurity and neutral particles
- treated are via binary collision model, all relaxation times self-consistently and forces are
- > 14 charged particle species and **105** types of Coulomb collisions
- DCSM model kinetic RCM^[2]

[2] D. Tskhakaya, ICAMDATA 2022

Results from 2021

Explanation of current-independence

Electron and ion (D⁺) VDFs at the sheath edge (from the PIC model)

Electron current due to cut-off VDF, ion current due to the shifted VDF

$$R_{\parallel}^{ei} = -m\upsilon_{ei}\left(V_{\parallel}^{i} - V_{\parallel}^{e}\right) \implies -m\upsilon_{ei}V_{\parallel}^{i}$$

Electron-ion friction at the sheath edge is **independent** of the current regime

Updated model

Neutral particle fluxes: sources

Neutral particle fluxes (ii): divertor loads

Neutral particle fluxes (iii): corrections

 $F,q\big|_{n,div} \to \alpha F,q\big|_{n,div}$ $\alpha \sim \frac{\delta r}{\pi h}$ *δr* ~1 mm <mark>-</mark>--q_D/q_D-AUG ITER Plasma sheath JET $\gamma_e = 2, \ \gamma_i = 2.5 + 0.5 (1 + T_i / T_e) \approx 3.5, \ \phi \approx 2.9,$ COMPASS $R_{F}=0, T_{\rho}\sim T_{n}$ n_ [m⁻³] **10**²⁰ **10**²¹

Large reduction

h

10⁰

10⁻¹

10⁻²

10⁻³

10

Distribution functions of absorbed ions/neutrals

Neutral particle distributions are near to the Maxwellian; ion distributions "Maxwellize" with increasing density.

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

W sputtering

	Gross [10 ²¹ m ⁻² s ⁻¹]	Nett [10 ²¹ m ⁻² s ⁻¹]
ID	6.21	1.00 (~16%)
OD	17.03	0.64 (~4%)

	Gross [10 ²¹ m ⁻² s ⁻¹]	Nett [10 ²¹ m ⁻² s ⁻¹]
ID	0	0
OD	0.015	0.015

Conclusions

- New boundary condition for the **ion parallel velocity** was derived
- Neutral particles probably will be the main particle and heat flux carriers to the divertor plasma in future tokamaks → significantly reduced divertor heat loads
- Ion-electron friction term in the vicinity of the sheath has been revised
- ADF and EDF of particles absorbed at the divertors "Maxwellize" with increasing plasma density

$$M_{\parallel} = 1 + \chi - \sqrt{\chi^2 + 2\chi} < 1$$

$$\begin{split} q_{div} &= \gamma_{plasma} T_e \left(F_{div}^{plasma} + \frac{2}{8.4 + 15.8/T_e} F_{div}^{neutral} \right) \\ &< \gamma_{plasma} T_e \left(F_{div}^{plasma} + F_{div}^{neutral} \right) \end{split}$$

Ongoing tasks

- DEMO-relevant plasma sheath including DCSM recombination
- > AUG, JET and ITER ELM-ing SOL with DCSM
- > W redeposition rates in collisional sheath
- Multi-dimensional plasma sheath modelling

Backup: Dressed cross-section method

$$\sigma(E,T,n) = \sigma(E) \frac{R(T,n)}{R_{n=0}(T)}$$

Example from ADAS^[6]: $e + Ne^{+i} \rightarrow e + Ne^{+i, (v)}$

Target	states	Number of CS
Ne	89	$(N+3)N/2 = 4\ 096$
Ne ⁺	279	39 339
Ne ⁺²	554	154 289
Ne ⁺³	668	224 114
Ne ⁺⁴	564	159 894
Total	2 154	~ 5.8x10⁵

Impossible to treat this number of transitions directly!

[6] https://open.adas.ac.uk/

$$\int f_m V \sigma(E,T,n) d\vec{V} = R(T,n)$$
$$\sigma(E,T,n \to 0) = \sigma_{n=0}(E)$$

Advantage

- i. large number of interaction channels are effectively incorporated
- ii. cross-sections and rate coefficients are available

Disadvantage

- i. needs calculation of temperature → reduction of the run speed (<10%)
- ii. Threshold energies $E_{\rm th}$ are density and temperature independent
- iii. EDFs assumed to be near-Maxwellian

Backup: BIT1 modelling of the sheath

Each simulation takes up to 5 M core hours, 10¹⁰ particles, 10⁶ (1D) spatial cells