Hydrogen Permeation through Fusion Materials

A. HOUBEN, M. RASINSKI, S. BREZINSEK, AND CH. LINSMEIER

an.houben@fz-juelich.de

Mitglied der Helmholtz-Gemeinschaft

Figure (edited): http://www.iter.org/

Motivation

Estimation and prevention of tritium permeation:

- \rightarrow Fuel loss
- \rightarrow Tritium accumulation
- \rightarrow Release into the environment

Deuterium permeation studies:

- \rightarrow 'Pure' materials: Eurofer97, 316L(N)-IG, Cu, CuCrZr-IG
- \rightarrow Combined material systems:
	- \rightarrow Cu/316L(N)-IG
	- \rightarrow W/CuCrZr-IG
	- \rightarrow W/Eurofer97

Investigation of the Influence of:

- \rightarrow Interfaces
- \rightarrow Microstructure

Permeation

Effective Permeability: \rightarrow Microstructure, grain size, pores

- \rightarrow Contamination of the surface
- \rightarrow Interfaces

Effective permeability can be higher or lower as the 'pure' or 'bulk' permeation, in order to verify the influence on the permeation \rightarrow measurement of samples with different microstructure, surface modifications..

Gas / Ion Driven Permeation

Gas-driven:

- \rightarrow General permeation behavior (physical understanding)
- \rightarrow Measurement does not influence the surface and bulk
- \rightarrow Pressure, temperature and sample thickness dependent measurements

high concentration/ high pressure side

low concentration/ low pressure side

Gas Driven Permeation

Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum

Experimental Setup

Measuring procedure:

- \rightarrow Sample preparation
- \rightarrow Evacuation: HPV/LPV ~10⁻⁹ mbar
- \rightarrow Calibration
- \rightarrow Pressure/temperature dependent measurement
- \rightarrow Lag-Time measurement -> Diffusion

Comparison 'pure' Materials

Fusion Steels:

- \rightarrow Eurofer97 (DEMO):
	- \rightarrow Reduced activation steel
	- \rightarrow Martensitic/ferritic, distorted bcc
- \rightarrow 316L(N)-ITER Grade
	- \rightarrow Nitrogen enhanced 316L
	- \rightarrow Austenitic, fcc

Cu and Cu Alloy

- - \rightarrow Oxygen-free copper (commercial)
	- \rightarrow Small voids
- \rightarrow CuCrZr-ITER Grade
	- \rightarrow ITER first wall panels
	- \rightarrow Cu with Cr precipitates

A. Houben *et al*., NME **33** (2022), 101256

Measurement and Analysis

All 'pure' samples and substrates are 'mirror' polished, annealed and the thickness is ~ 0.3 mm Gas-driven deuterium permeation flux measurements (measurement range: 300-550°C, 25-800 mbar): **Example Eurofer97:** $P = P_0 \exp \left(-\frac{E_P}{RT}\right)$

 \rightarrow Slope: \sim 0.5 \rightarrow J \sim _{\sqrt{p}} \rightarrow diffusion limited \rightarrow No change of sample during measurement Arrhenius plot \rightarrow fulfilled (measured T and p range)

Conclusion – 'Pure' Materials

Solid line: measured values Dotted line: adapted literature values Causey, 'mean value' of published effective permeation data (bulk) Mitglied der Helmholtz-Gemeinschaft 2023-02-08

- \rightarrow Comparable to literature values
- \rightarrow Permeability of Eu97 higher than 316L
- \rightarrow Permeability Cu / CuCrZr similar
- \rightarrow Diffusion limited regime

Study combined material systems:

- \rightarrow Influence of interfaces
- \rightarrow Influence of microstructure

Interfaces and Microstructure

The measurement of hydrogen permeation flux through a 'real' component is not possible:

- \rightarrow Permeation measurements through several combination of bulk and layered substrates
- \rightarrow Enables estimation of the hydrogen permeation through a component / permeation mechanism

First studied system: Cu coated 316L-IG

- \rightarrow For better estimation of the influence of the interface: measurement of several samples
- \rightarrow Microstructure of the coatings is 'identical', thicknesses will be varied in order to vary the layer bulk/interface ratio
- \rightarrow Separation of the influence of the microstructure (P_{LB}) and the influence of the interface (P_{int}) on the permeation flux

Major influence:

Microstructure:

- P_{tot} would vary with layer thickness
- Diffusion limited

Interface:

 P_{tot} would be identical for all layer thicknesses

A. Houben *et al*., NME **33** (2022), 101256

- Surface limited

Deuterium permeation studies on 316L(N)-IG, Cu and 316L(N)-IG with Cu layer:

- Comparison of pure, bare materials and the combination of steel and Cu

Cu coated 316L

316L-IG with Cu layer 'thin' (316L_Cu_thin):

316L-IG with Cu layer 'thick' (316L_Cu_thick):

316L-IG with Cu layer 'very thick' (316L_Cu_very_thick):

Cu layered 316L substrates:

- Magnetron sputter deposition, coated on one side
- Annealed after deposition
- Layer thickness: **316L_Cu_thin :** ~490 nm
	- **316L_Cu_thick:** ~980 nm

316L_Cu_very_thick: ~1400 nm

- 'Clean' interface, no cracks, no voids
- Microstructure similar between layers
- Surface different between layers
- Microstructure very different to bulk Cu (no voids!):

Polished Cu (Cu):

Measurements and Analysis

Gas-driven deuterium permeation flux measurements (measurement range: 300-550°C, 25- 800 mbar): From the permeation flux (J_P) the effective permeability (P) can be obtained:

p/T-dependent measurements:

 $\mathsf{J}_{\mathsf{P}} = \frac{\mathsf{P}_0 \sqrt{\mathsf{p}}}{d}$ $rac{\partial \Delta P}{\partial x}$ e $-E_P$ \overline{R} , $P = P_0 e$ $-$ E $_{\rm P}$ RT

 P_0 : permeation constant, E_P : activation energy

Calculation of the layer permeability (substrate and layer thickness independent, valid in Diffusion limited regime):

As resistivity (R) in series connection: $R_{tot} = R_1 + R_2$ and $R = \frac{1}{\sigma}$ $\frac{1}{\sigma} \approx \frac{1}{P}$ P

Layer permeability (contains P_{LR} and P_{int} !) : **Microstructure:** $P_{tot} \sim d_{lay} \rightarrow$ similar P_{lay} for all d_{lay} **Interface:** $P_{tot} \nsim d_{lay} \rightarrow$ increased P_{lay} for thicker d_{lay}

Results Cu coated 316L

- \rightarrow Reduction of permeability due to the coating (compared to the bare steel substrate 316L)
- Reduction is larger as expected from calculation of the permeability with values 316L / Cu bulk
- \rightarrow Permeabilities of layered substrates are different, dependent on layer thickness
- → Diffusion limited regime (only slight increase), similar 'up' and 'down' measurement values

Forschungszentrum

- Cu layer permeabilities are smaller as the Cu bulk permeability
- Effective permeability of Cu layers is very different, but order of magnitude is similar

$$
\rightarrow
$$
 Mean Value (MV): E_P = 72 $\frac{\text{kJ}}{\text{mol}}$, P₀ = 7*10⁻⁸ $\frac{\text{mol}}{\text{ms}\sqrt{\text{mbar}}}$

- Clear statement of the influence of the interface is not possible from these measurements
- → But: Strong indication that in this case the **influence of the interface is minor** compared to the **large influence of microstructure** on the permeability A. Houben *et al.*, NME 33 (2022), 101256 Mitglied der Helmholtz-Gemeinschaft 2023-02-08 14

W coated CuCrZr-IG

Second studied system: W coated CuCrZr-IG

In order to avoid cracking of W layer due to differences in thermal expansion:

- \rightarrow First attempt: thin W layer, max. temperature 450°C
- \rightarrow Second attempt: W deposition at elevated substrate temperature of around 300°C

CuCrZr-IG with W layer 'thin/cold':

- Magnetron sputter deposition, coated on one side
- Layer thickness: ~100 nm
- Annealed at 450°C after deposition
- Cracks after annealing
- Permeation measurement (T_{max} = 450°C): very similar to CuCrZr substrate (reasons: too thin layer, cracks?)
- \rightarrow No conclusion can be drawn from the result!

CuCrZr-IG with W layer 'hot' (CuCrZr_W_hot):

- Magnetron sputter deposition, coated on one side, T_{sub} ~300°C
- Layer thickness: ~ 350 nm
- Annealed at 550°C after depositon
- Very small cracks after annealing
- W phase confirmed by XRD
- \rightarrow Permeation measurement (T_{max}= 550°C)

W coated CuCrZr-IG

Permeation Flux Measurement CuCrZr_W_hot:

- \rightarrow Very similar up and down measurement
- \rightarrow No change of sample during measurement expected

$$
\rightarrow \text{Slope:} \sim 0.5 \rightarrow J \sim \sqrt{p} \rightarrow \text{diffusion limited}
$$

Results W coated CuCrZr

- \rightarrow Reduction of permeability due to the coating (compared to the bare CuCrZr)
- Diffusion limited regime, similar 'up' and 'down' measurement values
- \rightarrow Assumption: no measurable influence of interface

Comparison W coatings

CuCrZr_W_hot FIB/SEM after permeation measurement:

- 'Clean' interface: no intermediate phase
- In addition to small cracks: straight lines
- Straight cracks going completely through the W layer

Eu97_W FIB/SEM after annealing/permeation measurement:

A. Houben *et al*., NME **24** (2020), 100752

- W deposition without substrate heating
- Crack propagation during measurement (non stable measurement)
- Cracked W layer on Eurofer97: shortcuts to substrate
- Large influence on permeation flux (increase)

→ In **CuCrZr_W_hot no influence** of cracks on permeation measurement → ?

- W layer permeability is more than two orders of magnitude smaller compared to the CuCrZr permeability
- The permeabilities of W coatings deposit on different substrates a similar (calculation of layer permeability)

Results W coatings

300 **Layer permeability for W in CuCrZr_W_hot / Eu97_W:** 400 500 Permeability [mol D₂/m/s/mbar^{1/2}; 1×10^{-9} kJ Sample P_0 mol 1×10^{-10} $\left[\frac{\text{mol}}{\text{ms} \sqrt{\text{mbar}}}\right]$ E_P mol 1×10^{-11} CuCrZr 6(2)*10-6 79(1) 1×10^{-12} Eu97** 15.7(4)*10⁻⁷ 41.6(5) 1×10^{-13} W hot layer 1 2*10⁻⁸ 1 83 1×10^{-14} CuCrZı Eu97 W_cracked_layer* | 4*10⁻⁷ | 95 1×10^{-15} W hot layer W cracked layer

* W on Eu97: A. Houben *et al*., NME **24** (2020), 100752 **A. Houben *et al*., NME **19** (2019), 55-58

Temperature [K]

700

750

800

Temperature [°C]

- W layer permeability is more than two orders of magnitude smaller compared to the CuCrZr permeability
- \rightarrow The permeabilities of W coatings deposit on different substrates a similar (calculation of layer permeability)

 1×10^{-16}

600

650

Strong indication that in this case the **influence of the interface is minor** as well

- Temperature [K]
W layer permeabilities are larger as the W bulk permeability (but: different T range!)
- → Strong indication that in this case the **influence of the interface is minor** compared to the **large influence of microstructure** on the permeability

Forschungszentrum

- Substrate heating during deposition leads to a reduction of cracks in the layer and an avoidance of crack propagation (stable permeation flux measurement, lower layer permeability)
- Future plan for this year: same W deposition parameter (hot) for a W coated Eu97 sample Mitglied der Helmholtz-Gemeinschaft 2023-02-08 21

Conclusions

'Pure' Materials:

- \rightarrow Polished samples \rightarrow diffusion limited
	- \rightarrow Permeability of Eu97 higher than 316L
	- \rightarrow Permeability Cu / CuCrZr similar

Coated Substrates:

- \rightarrow Influence of the interface is minor
- → **Influence of the microstructure is large**
- \rightarrow Permeability of layer different to bulk permeability
- \rightarrow Comparison of coatings deposited on different substrates is possible
- \rightarrow Increase of permeability due to cracks in layer
- \rightarrow Substrate heating during deposition leads to a stable coating

Future Plans:

- \rightarrow W hot coated Eurofer97
- \rightarrow Permeation measurements on p-damaged Eurofer97

Thank you for your attention!

an.houben@fz-juelich.de

A part of this work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion and 2019-2020 under grant agreement No 633053). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

