

OLMAT as a HHF Facility for Testing ITER & DEMO Divertor Armor Materials 2022/2023 3rd project meeting

D.Alegre, E. Oyarzabal, F. Tabares, A. de Castro, D. Tafalla and the OLMAT team.

Fusion National Laboratory. CIEMAT, Madrid. Spain

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Laboratorio Nacional

Ciemat

OLMAT

- 1.- Introduction
- 2.- CW laser
- 3.- Beam dump

2021-2 REPORT

- 1.- ITER-like W
- 2.- WfW

2023 PLANNING

- 1.- Disruption-like pulses (cracking at WEST)
- 2.- Large holder: testing >50 samples

DEMO: power loads

Challenging conditions for a nuclear fusion reactor.

- ✓ Large, energetic (14 MeV) neutron loading of walls
- ✓ Large heat and particle loads: plasma exhaust at divertor region
- ✓ Try to simulate them in OLMAT

Typical heat loads [1]

- Steady state:
 - Normal: ~10 MW/m² (ΔT_s ~800 K)
 - Slow tran.: ~20-70 MW/m² (ΔT_s ~1600-4200 K)

[1] J.H. You et al., Fus. Eng. Des. 175 (2022) 113010.

PWIE 3rd project meeting, 9th February 2023 1/17

DEMO: power loads

Challenging conditions for a nuclear fusion reactor.

- ✓ Large, energetic (14 MeV) neutron loading of walls
- ✓ Large heat and particle loads: plasma exhaust at divertor region
- ✓ Try to simulate them in OLMAT
 - Typical heat loads [1]
- Steady state:
 - Normal: ~10 MW/m² (ΔT_s ~800 K)
 - Slow tran.: ~20-70 MW/m² (ΔT_s ~1600-4200 K)
- Transients (off-normal):
 - > ELMs (mitigated): ~20 MW/m² 0.5 ms (ΔT_s ~150 K)
 - > ELMs: ~150-500 MW/m² 1 ms. ($\Delta T_s \sim 1,100-3,600 \text{ K}$)
 - Disruptions: 80-110 GW/m² 1-4 ms. (ΔT_s ~600,000 K)

[1] J.H. You et al., Fus. Eng. Des. 175 (2022) 113010.

PWIE 3rd project meeting, 9th February 2023 1/17

OLMAT: NBI BEAM

Heating a target with the NBI beam from TJ-II stellarator [2-3]

- **Devoted exposure chamber** and pre-chamber with independent vacuum system.
- Beam power: 705 kW; H⁺ energy: 8-40 keV. H⁺ flux : 1.7-10²² 1/m²s.
- Wide beam: gaussian beam with 1/e width of 20 cm.

DLMAT

REPORT

2021-2

PLAN

2023

OLMAT: NBI BEAM

Heating a target with the NBI beam from TJ-II stellarator [2-3]

- Devoted exposure chamber and pre-chamber with independent vacuum system.
- Beam power: 705 kW; H⁺ energy: 8-40 keV. H⁺ flux : 1.7.10²² 1/m²s.
- Wide beam: gaussian beam with 1/e width of 20 cm.
- Power density between 8±2 to 55±15 MW/m².
- Pulse duration up to 150 ms.
- Repetition rate: pulse every 30-120 s depending on power
 - More oriented to <u>fatigue testing</u>.
 - ➢ 800 pulses per day achievable.

[2] D. Alegre, et al. J Fus. Ener. **39** (2020) 411–420.
[3] F.L. Tabarés et al., Fus. Eng. Des. **187** (2023) 113373

OLMAT: NBI BEAM

Heating a target with the NBI beam from TJ-II stellarator [2-3]

- Devoted exposure chamber and pre-chamber with independent vacuum system.
- Beam power: 705 kW; H⁺ energy: 8-40 keV. H⁺ flux : 1.7-10²² 1/m²s.
- Wide beam: gaussian beam with 1/e width of 20 cm.
- Power density between 8±2 to 55±15 MW/m².
- Pulse duration up to 150 ms.
- **Repetition rate:** pulse every **30-120 s** depending on power
 - More oriented to <u>fatigue testing</u>.
 - > 800 pulses per day achievable.
- Developed plasma: T_e: ~2 eV; n_e: 10¹⁸ m⁻³ (OES and probe).
- Equipped with a large variety of diagnostics.

OLMAT: DIAGNOSTICS

OLMAT: DIAGNOSTICS

16-channel photomultiplier

5

2021-2 REPORT

2023 PLAN

SUMMARY

Compact fast camera

IR camera and pyrometers

CMOS OES

OLMAT: MANIPULATOR

OLMAT: MANIPULATOR

Manipulator:

- Loading of samples in pre-chamber: heat treatment under vacuum, TDS analysis ...
- Heating until about 500 °C. But no refrigeration! plateau at 600 °C after 10-30 pulses
- <u>Turntable</u> to change irradiation angle to 60° or more.

OLMAT

OLMAT: MANIPULATOR

Manipulator:

- Loading of samples in pre-chamber: heat treatment under vacuum, TDS analysis …
- Heating until about 500 °C. But no refrigeration! plateau at 600 °C after 10-30 pulses
- <u>Turntable</u> to change irradiation angle to 60° or more.
- Sample holder size limited to about 100 mm diameter and 40 mm thick:
 - Usually much smaller to irradiate many at the same time

PWIE 3rd project meeting, 9th February 2023 5/17

- Power: 930 W continuous; 9300 W pulsed.
- Pulses: 0.2-10 ms; 90 J energy; 10-2000 Hz
- NBI <u>55±15 MW/m²</u>. <u>Synergies laser+beam</u>
 - Ellipsoidal spot due to 52 deg angle irradiation
 - Slow installation of a industrial laser in a laboratory: safety, integration, vacuum systems...
 - Bellow to allow laser positioning on sample.

DLMAT

- Power: 930 W continuous; 9300 W pulsed.
- Pulses: 0.2-10 ms; 90 J energy; 10-2000 Hz
- NBI <u>55±15 MW/m²</u>. <u>Synergies laser+beam</u>
 - Ellipsoidal spot due to 52 deg angle irradiation
 - Slow installation of a industrial laser in a laboratory
 - Bellow to allow laser positioning on sample.

Continuous mode:

- □ ITER (or DEMO) steady state:
 - <u>10 MW/m²</u> in 33 mm² area. Few seconds until steady state is reached.
- □ Slow transients:
 - <u>20-70 MW/m²</u> in 17-4 mm² area.

- Power: 930 W continuous; 9300 W pulsed.
- Pulses: 0.2-10 ms; 90 J energy; 10-2000 Hz
- NBI <u>55±15 MW/m²</u>. <u>Synergies laser+beam</u>
 - Ellipsoidal spot due to 52 deg angle irradiation
 - Slow installation of a industrial laser in a laboratory
 - Bellow to allow laser positioning on sample.

Continuous mode:

- □ ITER (or DEMO) steady state: <u>10 MW/m²</u>in 33 mm² area.
- **Slow transients:** <u>20-70 MW/m²</u> in 17-4 mm² area.

Pulsed mode:

- □ Mitigated ELMs:
 - <u>20 MW/m² for 0.5 ms</u> in 130 mm² area. <u>2000 Hz</u>. Quite important fatigue

Disruptions:

<u>1-6.5 GW/m² for 2 ms in 3.3-0.5 mm² area.</u>

OLMAT: BEAM DUMP

UPGRADES: beam dump

Install actively-cooled copper beam dump.

- Better protection of valves and experimental time increased.
- Place a large (280x280 mm) sample holder.

Install actively-cooled copper beam dump.

- Better protection of valves and experimental time increased.
- Place a large (280x280 mm) sample holder.
- Fabrication of copper plate failed (water leaks), so delay until autumn 2023

Laboratorio Nacional

Ciemat

OLMAT

- 1.- Introduction
- 2.- CW laser
- 3.- Beam dump

2021-2 REPORT

- 1.- ITER-like W
- 2.- WfW

2023 PLANNING

- 1.- Disruption-like pulses (cracking at WEST)
- 2.- Large holder: testing >50 samples

REPORT: ITER-like W

ITER-like W samples at 600-700 °C with $\Delta T = 200-350$ °C:

12x12x5 mm, polished, ITER-like W samples provided by FZJ

SUMMARY

2023 PLAN

OLMAT

2021-2 REPORT

[4] M. Wirtz, et al, Nucl Mat. Ener. 12 (2017) 148

PWIE 3rd project meeting, 9th February 2023 7/17

REPORT: ITER-like W

ITER-like W samples at 600-700 °C with $\Delta T = 200-350$ °C:

- <u>641 pulses of $15 \pm 5 \text{ MW/m}^2$ every 45s: $F_{HF} = 4.7 \pm 1.6 \text{ MW/m}^2 \text{s}^{0.5}$ </u>
- Particle flux 0.62 10²² m⁻²s⁻¹. OLMAT range: 0.28-1.45 10²² m⁻²s⁻¹

Damage has only been found at F_{HF} =4.7 MW/m²s^{0.5} (tested F_{HF} = 1.8-4)

OLMAT

REPORT

2021-2

2023 PLAN

REPORT: ITER-like W

ITER-like W samples at 600-700 °C with $\Delta T = 200-350$ °C:

- <u>641 pulses of $15 \pm 5 \text{ MW/m}^2$ every 45s: $F_{HF} = 4.7 \pm 1.6 \text{ MW/m}^2 \text{s}^{0.5}$ </u>
- Particle flux 0.62 10²² m⁻²s⁻¹. OLMAT range: 0.28-1.45 10²² m⁻²s⁻¹

Damage has only been found at F_{HF} =4.7 MW/m²s^{0.5} (tested F_{HF} = 1.8-4)

- No measurable erosion (<1 mg)
- Intergranular cracking of up to 20-30 µm deep.
- Relatively small number of pulses. <u>But results from JUDITH2 reproduced [4]!</u>

OLMAT

REPORT

2021-2

2023 PLAN

PoMa- WfW samples at 600-700 °C with $\Delta T = 200-350$ °C:

[5] Y. Mao et al., Nucl. Fusion. 62 (2022) 106029.

PWIE 3rd project meeting, 9th February 2023 9/17

PoMa- WfW samples at 600-700 °C with $\Delta T = 200-350$ °C:

[5] Y. Mao et al., Nucl. Fusion. 62 (2022) 106029.

PWIE 3rd project meeting, 9th February 2023 9/17

PoMa- WfW samples at 600-700 °C with $\Delta T = 200-350$ °C:

- <u>934 pulses of 12-15±5 MW/m²</u> every 45s: $F_{HF} = 3.8-4.7\pm1.6$ MW/m²s^{0.5}
- Particle flux 0.62 10²² m⁻²s⁻¹. OLMAT range: 0.28-1.45 10²² m⁻²s⁻¹

OLMAT

PoMa- WfW samples at 600-700 °C with $\Delta T = 200-350$ °C:

- <u>934 pulses of 12-15±5 MW/m²</u> every 45s: $F_{HF} = 3.8-4.7\pm1.6$ MW/m²s^{0.5}
- Particle flux 0.62 10²² m⁻²s⁻¹. OLMAT range: 0.28-1.45 10²² m⁻²s⁻¹

Complex analysis due to so a high roughness (tens µm)

Rough surface with flat and granulated grains. Pores and gaps between grains are evident

PLAN

2023

OLMAT

REPORT

PoMa- WfW samples at 600-700 °C with $\Delta T = 200-350$ °C:

- <u>934 pulses of 12-15±5 MW/m²</u> every 45s: $F_{HF} = 3.8-4.7\pm1.6$ MW/m²s^{0.5}
- Particle flux 0.62 10²² m⁻²s⁻¹. OLMAT range: 0.28-1.45 10²² m⁻²s⁻¹

Complex analysis due to so a high roughness (tens µm)

Granulated grains caused a large cauliflower-type growth. Similar to described in [5].

[5] Y. Mao et al., Nucl. Fusion. 62 (2022) 106029.

PWIE 3rd project meeting, 9th February 2023 **11/17**

PoMa- WfW samples at 600-700 °C with $\Delta T = 200-350$ °C:

- <u>934 pulses of 12-15±5 MW/m²</u> every 45s: $F_{HF} = 3.8-4.7\pm1.6$ MW/m²s^{0.5}
- Particle flux 0.62 10²² m⁻²s⁻¹. OLMAT range: 0.28-1.45 10²² m⁻²s⁻¹

Complex analysis due to so a high roughness (tens µm)

Some erosion, but likely due to loose grains (10-20 mg). No evident particle emission observed by fast camera. This is due to not being polished, as in [5] less erosion than ITER-like W. But this is an issue for a real reactor, need to polish all WfW surface?

[5] Y. Mao et al., Nucl. Fusion. 62 (2022) 106029.

PWIE 3rd project meeting, 9th February 2023 11/17

PoMa- WfW samples at 600-700 °C with $\Delta T = 200-350$ °C:

- <u>934 pulses of 12-15±5 MW/m²</u> every 45s: $F_{HF} = 3.8-4.7\pm1.6$ MW/m²s^{0.5}
- Particle flux 0.62 10²² m⁻²s⁻¹. OLMAT range: 0.28-1.45 10²² m⁻²s⁻¹

Complex analysis due to so a high roughness (tens µm)

Some cracks appear but difficult to confirm, as they are also in masked part. Fabrication? Appears more resilient than ITER-like W. Repeat at higher pulses and polished samples.

PLAN

2023

OLMAT

- 1.- Introduction
- 2.- CW laser
- 3.- Beam dump

2021-2 REPORT

- 1.- ITER-like W
- 2.- WfW

2023 PLANNING

- 1.- Disruption-like pulses (cracking at WEST)
- 2.- Large holder: testing >50 samples

DISRUPTION CRACKING AT WEST 🐐

WEST ITER-like tiles, actively cooled [6]:

 <u>Cracking and melting</u> of exposed surfaces over full poloidal extent of divertor, <u>even on</u> areas with no steady state heat flux.

[6] J.P. Gunn et al., Nucl. Mat. Ener 27 (2021) 100920

DISRUPTION CRACKING AT WEST

WEST ITER-like tiles, actively cooled [6]:

- <u>Cracking and melting</u> of exposed surfaces over full poloidal extent of divertor, <u>even on</u> areas with no steady state heat flux.
- Brittle cracking or ductile failure of W due to disruptions of 600 MW/m² [7]:
 - > Just one-two disruptions are enough to cracking and prompt failure.
 - But if previously steady state heat load (45 MW/m²) almost no damage: more realistic
- Consistent with cracking threshold determined in JUDITH2 [4] F_{HF} = 6 MW/m²s^{0.5}

[4] M. Wirtz, et al, Nucl Mat. Ener. **12** (2017) 148
[6] J.P. Gunn et al., *Nucl. Mat. Ener* **27** (2021) 100920
[7] A. Durif, et al., Phys. Scr. 97 (2022) 074004.

PWIE 3rd project meeting, 9th February 2023 **13/17**

EXPERIMENTS: laser

Test WEST disruptions conditions with our CW laser [6-7] in March

• Laser irradiation at edges and at 52 deg.

OLMAT

REPORT

2021-2

PLAN

2023

SUMMARY

• Power 600 MW/m² for 2 ms (in DEMO 10-110 GW/m² 1-4 ms)

EXPERIMENTS: laser

Test WEST disruptions conditions with our CW laser [6-7] in March

<u>Laser irradiation at edges</u> and at 52 deg.

OLMAT

REPORT

2021-2

PLAN

2023

SUMMARY

- Power 600 MW/m² for 2 ms (in DEMO 10-110 GW/m² 1-4 ms)
- Make use of laser flexibility: look for damage threshold
 - Just 1-2 pulses should cause cracking [6-7]. Test 1, 2, 4, 10...
 - Cracking threshold at <u>different powers</u>: 150, 300, 1000 MW/m²
 - > Same but with 45 MW/ m^2 in continuous just before disruption.
 - Heat up samples at 600 °C: > DBTT

[6] J.P. Gunn et al., *Nucl. Mat. Ener* 27 (2021) 100920
[7] A. Durif, et al., Phys. Scr. 97 (2022) 074004.

EXPERIMENTS: laser

Test WEST disruptions conditions with our CW laser [6-7] in March

• Laser irradiation at edges and at 52 deg.

DLMAT

REPORT

2021-2

AN

2

2023

SUMMARY

- Power 600 MW/m² for 2 ms (in DEMO 10-110 GW/m² 1-4 ms)
- Make use of laser flexibility: look for damage threshold
 - Just 1-2 pulses should cause cracking [6-7]. Test 1, 2, 4, 10...
 - Cracking threshold at <u>different powers</u>: 150, 300, 1000 MW/m²
 - Same but with 45 MW/m² in continuous just before disruption.
 - Heat up samples at 600 °C: > DBTT
- Mainly ITER-like W, but also PoMa-WfW

[6] J.P. Gunn et al., *Nucl. Mat. Ener* 27 (2021) 100920
[7] A. Durif, et al., Phys. Scr. 97 (2022) 074004.

At beam dump: different materials at a power density distribution: late 2023

PWIE 3rd project meeting, 9th February 2023 15/17

At beam dump: different materials at a power density distribution: late 2023

- Use the whole OLMAT beam (20 cm) to have a power distribution (here just an idea)
- Changed daily to have a distribution of number of pulses: 1000, 2000, 5000, etc.

OLMAT

REPORT

2021-2

PLAN

2023

SUMMARY

Laboratorio Naciona

Ciemol

- <u>Different samples</u> irradiated at the same time <u>to compare its fatigue resilience</u>. Represented by colors in the picture:
 - > Yet to be defined the total number of samples

Laboratorio Nacional de Fusión

OLMAT

- <u>Different samples</u> irradiated at the same time <u>to compare its fatigue resilience</u>. Represented by colors in the picture:
 - > Yet to be defined the total number of samples
 - > High power, Divertor: ITER-like W, WfW.
 - **Low power, main wall:** SMART-W+Zr, Eurofer.

Laboratorio Naciona

Ciemat

OLMAT

At beam dump: different materials at a power density distribution: late 2023

- <u>Different samples</u> irradiated at the same time <u>to compare its fatigue resilience</u>. Represented by colors in the picture:
 - > Yet to be defined the total number of samples.
 - **High power, Divertor:** ITER-like W, WfW.
 - **Low power, main wall:** SMART-W+Zr, Eurofer.
- One sample may be irradiated by the CW laser:
 - Pulsed: to simulate <u>transients (0.5-10 GW/m²)</u>
 - > Heated continuously to T > DBTT to avoid brittle fatigue.

Laboratorio Naciona

Ciemat

OLMAT

- <u>Different samples</u> irradiated at the same time <u>to compare its fatigue resilience</u>. Represented by colors in the picture:
 - Yet to be defined the total number of samples
 - High power, Divertor: ITER-like W, WfW.
 - **Low power, main wall:** SMART-W+Zr, Eurofer.
- One sample may be irradiated by the CW laser:
 - Pulsed: to simulate <u>transients (0.5-10 GW/m²)</u>
 - > Heated continuously to $\underline{T} > \underline{DBTT}$ to avoid brittle fatigue.
- **Future:** W nanostructured, composites, variety of 3D-print structures (collaboration with private company), etc.
- Open to more collaborators

Laboratorio Nacion

2023

OLMAT

- 1.- Introduction
- 2.- CW laser
- 3.- Beam dump

2021-2 REPORT

- 1.- ITER-like W
- 2.- WfW

2023 PLANNING

- 1.- Disruption-like pulses (cracking at WEST)
- 2.- Large holder: testing >50 samples

SUMMARY

UPGRADES

- Initial experiments of OLMAT gives interesting results.
- PoMa-WfW seems to be more resilient against fatigue cracking than ITERlike W. But we need to polish and repeat experiments.

2023 plans (6 days)

- Use the new, flexible CW laser to study disruptions on edges like in WEST.
 ~3 operation days in March.
- Install actively-cooled beam dump in summer.
- Better characterize OLMAT beam power distribution (need cooling).
- Large sample holder to compare different materials at different powers and number of pulses. ~3 operation days in late 2023

RESERVE SLIDES

CW laser for OLMAT: characteristics *****

Pulses: 0.2-10 ms; 90J energy; 10-2000 Hz

1. Ontical characteristics

Ν	Characteristics	Test conditions	Symbol	Min.	Typ.	Max.	Unit
1	Operation Mode			CW / pulsed			
2	Polarization			Random			
3	CW Nominal Power		Pnom	900			W
4	Pulsed Nominal Power			9000			W
5	Pulse duration			0.2		10	msec
6	Pulse energy	Duty cycle 10 %, PRR = 10 Hz, Maximum power	2 2	90			J
7	Duty Cycle*	Pulsed mode				50*	%
8	Output Power Tuning Range	Pulsed mode		10		105	%
9	Emission Wavelength	Output power: 900 W	λ		1070		nm
10	Emission Linewidth	Output power: 900 W	Δλ		3	6	nm
11	Switching ON/OFF Time	Output power: 900 W			100	150	μs
12	Maximum Modulation Frequency	CW & Pulsed modes Output power: 900 W		2000			Hz
13	Output Power Instability	Output power: 900 W Time interval: 8 hrs (T=Constant)			±1	±2	%
14	Red Guide Laser Power			19 B	0.4	0.5	mW

*Maximum duty cycle limit is inversely proportional to peak power: 10% for 9000W, 15% for 6000 W,......, 50% for 1800W and lower

Laboratorio Nacional