

 α

ം \sim \sim 0 \circ \circ \circ \circ \circ Ω

> α \circ

 \circ \circ \circ

 α \circ \circ \circ \sim

 $0₀$ $0₀$ $0₀$

 \circ \circ \bullet \circ \circ \circ

 \circ \bullet

 \circ \circ \circ

Full-flux-surface effects on electrostatic turbulence in Wendelstein 7-X-like plasmas

Felix Wilms, Alejandro Banon Navarro, Frank Jenko

 $0₀$

 0.0 $0¹$ \circ \circ 0 0 0 0 $0¹$ $0¹$ 0 0 0 0

> This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via *the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions* expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the *European Commission. Neither the European Union nor the European Commission can be held responsible for them.*

High-performance pellet discharges in W7-X

" ${T_i}$ "-clamping

High-performance pellet discharges in W7-X

• Standard gas-puff discharges in W7-X do not exceed ion temperatures of ~1.5 keV:

High-performance pellet discharges in W7-X

• Standard gas-puff discharges in W7-X do not exceed ion temperatures of ~1.5 keV:

• Fuelling the plasma with frozen hyrodgen pellets+ increased heating: clamping is broken

Current explanations (Xanthopoulos et al., PRL, 2020)

1. FT simulations with kinetic electrons:

Decrease of η_i closer to 1 \Rightarrow Transition from **ITG** to **iTEM** mode, which is stabilised by "max-J"-property

Current explanations (Xanthopoulos et al., PRL, 2020)

1. FT simulations with kinetic electrons:

Decrease of ηⁱ closer to 1 ⇒Transition from **ITG** to **iTEM** mode, which is stabilised by "max-J"-property

2. FFS simulations with adiabatic electrons:

Radial electric field dislocates ITG into regions of better curvature, therefore providing less ITG drive; however, increase in E_r not enough to compensate increase in temperature gradient ⇒ secondary effect

FIG. 3. Time-averaged density fluctuations on the magneti surface of the W7-X stellarator from the simulations corresponding to Fig. 2 (rescaled with respect to their individual maximum value to facilitate inspection). The magnetic field line $a = 0$ is shown in black

1. FT simulations with kinetic electrons:

max-J stabilisation was only tested for FT simulations. It is not clear whether this also holds true in global simulations (e.g. instead of stabilisation, the mode could shift position)

Limitations of current explanation

1. FT simulations with kinetic electrons:

max-J stabilisation was only tested for FT simulations. It is not clear whether this also holds true in global simulations (e.g. instead of stabilisation, the mode could shift position)

2. FFS simulations with adiabatic electrons:

Neglects the effect of the radial electric field on trapped electrons, which can also influence ITG behaviour

Limitations of current explanation

1. FT simulations with kinetic electrons:

max-J stabilisation was only tested for FT simulations. It is not clear whether this also holds true in global simulations (e.g. instead of stabilisation, the mode could shift position)

2. FFS simulations with adiabatic electrons:

Neglects the effect of the radial electric field on trapped electrons, which can also influence ITG behaviour

GENE-3D can do both things simultaneously

Limitations of current explanation

1. FT simulations with kinetic electrons:

max-J stabilisation was only tested for FT simulations. It is not clear whether this also holds true in global simulations (e.g. instead of stabilisation, the mode could shift position)

2. FFS simulations with adiabatic electrons:

Neglects the effect of the radial electric field on trapped electrons, which can also influence ITG behaviour

GENE-3D can do both things simultaneously

"Stability valley" in nonlinear FFS

• Use GENE-3D in flux-tube (FT) and full-flux-surface (FFS) mode

- Use GENE-3D in flux-tube (FT) and full-flux-surface (FFS) mode
- Kinetic electrons in the collisionless, electrostatic ($\beta_e = 10^{-4}$) limit

- Use GENE-3D in flux-tube (FT) and full-flux-surface (FFS) mode
- Kinetic electrons in the collisionless, electrostatic ($\beta_e = 10^{-4}$) limit
- Wendelstein 7-X (W7-X) Standard (EIM) and Low-mirror (AIM) configuration, $\rho^* = 1/200$ (Xanthopoulos et al., PRL 2014)

- Use GENE-3D in flux-tube (FT) and full-flux-surface (FFS) mode
- Kinetic electrons in the collisionless, electrostatic ($\beta_e = 10^{-4}$) limit
- Wendelstein 7-X (W7-X) Standard (EIM) and Low-mirror (AIM) configuration, $\rho^* = 1/200$ (Xanthopoulos et al., PRL 2014)
- Consider the flux-surface at $\rho_{tor} = 0.65$, for FT simulations only bean-shaped tube ($\alpha = 0$)

- Use GENE-3D in flux-tube (FT) and full-flux-surface (FFS) mode
- Kinetic electrons in the collisionless, electrostatic ($\beta_e = 10^{-4}$) limit
- Wendelstein 7-X (W7-X) Standard (EIM) and Low-mirror (AIM) configuration, $\rho^* = 1/200$ (Xanthopoulos et al., PRL 2014)
- Consider the flux-surface at $\rho_{tor} = 0.65$, for FT simulations only bean-shaped tube ($\alpha = 0$)

Standard configuration

Standard configuration

• FT: "established" results (ITG strong, TEM weak, Mixed more stable than the others) (Alcuson et al., Xanthopoulos et al., Thienpondt et al., …)

Standard configuration

EIM configuration, $a/L_{T_e} = 0$

- FT: "established" results (ITG strong, TEM weak, Mixed more stable than the others) (Alcuson et al., Xanthopoulos et al., Thienpondt et al., …)
- FFS simulations show same behaviour

Variation across field lines

- Heat flux spread homogeneously over field lines in FFS (std < 20% of mean)
- Crosses indicate heat fluxes of FT simulation at the corresponding position

Variation across field lines

Wendelstei

- Heat flux spread homogeneously over field lines in FFS (std < 20% of mean)
- Crosses indicate heat fluxes of FT simulation at the corresponding position
- Reasonable agreement between FT and FFS for Mixed and TEM case

Variation across field lines

- Heat flux spread homogeneously over field lines in FFS (std < 20% of mean)
- Crosses indicate heat fluxes of FT simulation at the corresponding position
- Reasonable agreement between FT and FFS for Mixed and TEM case
- However, ion heat flux differs by ~30% for the ITG case
	- => Even patching together multiple flux-tubes could still give different result (will be investigated later in more detail)

 $-1.0 - 0.5$ 0.0 0.5 1.0

 α [π /5]

 $-1.0 - 0.5$ 0.0 0.5

 α [π /5]

 1.0

 0.4

 $-1.0 - 0.5$ 0.0 0.5 1.0

 α [π /5]

• "Where do the experimentalists have to look?"
EIM configuration, $a/L_{T_e} = 0.0$

• "Where do the experimentalists have to look?" EIM configuration, $a/L_{T_e} = 0.0$

• Simulations show weak localisation, in line with global simulations by Euterpe and GENE-3D (Sanchez et al., NF 2023)

• Simulations show weak localisation, in line with global simulations by Euterpe and GENE-3D (Sanchez et al., NF 2023)

- Simulations show weak localisation, in line with global simulations by Euterpe and GENE-3D (Sanchez et al., NF 2023)
- TEM and Mixed cases are more uniform than ITG

• AIM configuration also shows strong reduction going from the ITG to Mixed, while TEM is also much more benign than ITG

• AIM configuration also shows strong reduction going from the ITG to Mixed, while TEM is also much more benign than ITG

• Possible reason: gradients are not strong enough to show significant configurational effect

• AIM configuration also shows strong reduction going from the ITG to Mixed, while TEM is also much more benign than ITG

• Possible reason: gradients are not strong enough to show significant configurational effect

• AIM configuration also shows strong reduction going from the ITG to Mixed, while TEM is also much more benign than ITG

• Possible reason: gradients are not strong enough to show significant configurational effect

• Going back to EIM configuration and adding a radial electric field of $M_{ExB} = \pm 0.015$ $(- \pm 19 \; kV/m$ for T=3.41 keV)

- Going back to EIM configuration and adding a radial electric field of $M_{ExB} = \pm 0.015$ $(- \pm 19 \; kV/m$ for T=3.41 keV)
- Heat fluxes fairly unaffected by either sign of E_r

Wendelstei

- Going back to EIM configuration and adding a radial electric field of $M_{ExB} = \pm 0.015$ $(-\pm 19 \frac{kV}{m}$ for T=3.41 keV)
- Heat fluxes fairly unaffected by either sign of E_r

Explanation:

1) Turbulence is not localised, so dislocation has no significant effect for these cases (see Sanchez et al.)

- Going back to EIM configuration and adding a radial electric field of $M_{ExB} = \pm 0.015$ $(- \pm 19 \frac{kV}{m} \text{ for } T = 3.41 \text{ keV})$
- Heat fluxes fairly unaffected by either sign of E_r

Explanation:

- 1) Turbulence is not localised, so dislocation has no significant effect for these cases (see Sanchez et al.)
- 2) Mach number too low to cause serious dislocation (see later)

Adding an electron temperature graident

- ITG case seems to be further destabilised
- Possible reason: excitation of ITG/VT-TEM hybrid

EIM configuration, $a/L_{T_e} = 2.5$

Wendelsteir

Adding an electron temperature graident

- ITG case seems to be further destabilised
- Possible reason: excitation of ITG/VT-TEM hybrid
- Look at structures along magnetic field lines:

Adding an electron temperature graident

- ITG case seems to be further destabilised
- Possible reason: excitation of ITG/VT-TEM hybrid
- Look at structures along magnetic field lines:
	- Ion heat flux structuer fairly unaffected
	- Electron heat flux starts to develop local maxima at positions of magnetic wells, just like the TEM case

Mixed and TEM: FT and FFS comparison

• FT simulations do not only produce quantitative, but also qualitative differences

Mixed and TEM: FT and FFS comparison

• FT simulations do not only produce quantitative, but also qualitative differences

• FT predicts that total transport of TEM and Mixed case is very similar, Mixed case has lower electron transport

• Mixed case in FFS has significantly more transport in both channels than TEM

Variation of fluxes across field lines

• Significant difference between heat fluxes obtained by FT simulations in comparison with the FFS fluxes evaluated at $\alpha = 0$ for all cases

Wendelstei

Variation of fluxes across field lines

• Significant difference between heat fluxes obtained by FT simulations in comparison with the FFS fluxes evaluated at $\alpha = 0$ for all cases

• Averaging fluxes of multiple FT simulations for ITG case still gives much more transport $\frac{1}{\sigma}$ than the FFS simulation

 $12/15$

Variation of fluxes across field lines

• Significant difference between heat fluxes obtained by FT simulations in comparison with the FFS fluxes evaluated at $\alpha = 0$ for all cases

- Averaging fluxes of multiple FT simulations for ITG case still gives much more transport than the FFS simulation
- Heat flux is spread fairly uniform for FFS over the field lines, while highly localised for FT
	- => FT simualtions will not provide correct sptatial structure of heat flux

Variation of fluxes across field lines

• Significant difference between heat fluxes obtained by FT simulations in comparison with the FFS fluxes evaluated at $\alpha = 0$ for all cases

- Averaging fluxes of multiple FT simulations for ITG case still gives much more transport than the FFS simulation
- ITG, $a/L_{T_e} = 2.5$ Mixed, $a/L_{\text{T}_2} = 2.5$ TEM, $a/L_{T_e} = 2.5$ $30[°]$ $0.6 Q_{ions}[Q_{GB}]$ 2.0 $25 1.5 0.4$ $20 1.0 -$ 15 0.2 $0.5 -$ 10 11 Qelectrons [QGB] 2 2.5 9 2.0 ☎ 1.5 1.0 $0.5 -1.0 - 0.5$ 0.0 0.5 1.0 0.5 $-1.0 - 0.5$ 0.0 0.5 -1.0 -0.5 0.0 $1₀$ 1.0 α [π /5] α [π /5] α [π /5]
- Heat flux is spread fairly uniform for FFS over the field lines, while highly localised for FT => FT simualtions will not provide correct sptatial structure of heat flux
- Mixed case does not seem to have transport peaking at $\alpha = 0 \Rightarrow$ using only one flux-tube might be misleading

Localisation of cases with electron temperature gradient

EIM configuration, $a/L_{T_e} = 2.5$

• ITG and TEM case show similar structural behaviour compared to the cases with $a/L_{T_e}{=}0$

Localisation of cases with electron temperature gradient

- ITG and TEM case show similar structural behaviour compared to the cases with $a/L_{T_e}{=}0$
- Mixed case seems to be dominated by a different type of turbulence than before:
	- Highly localised
	- Seems to peak on the inboard-midplane

Localisation of cases with electron temperature gradient

- ITG and TEM case show similar structural behaviour compared to the cases with $a/L_{T_e}{=}0$
- Mixed case seems to be dominated by a different type of turbulence than before:
	- Highly localised
	- Seems to peak on the inboard-midplane

Will be investigated in more detail in the future

Mixed case with radial electric field

• Heat flux changes from $(Q_{ions}, Q_{electrons})/Q_{GB} = (1.7, 1.98) \rightarrow (1.26, 1.46)$

• Despite strong localisation, no significant displacement

Mixed case with radial electric field

Heat flux changes from $(Q_{ions}, Q_{electrons})/Q_{GB} = (1.7, 1.98) \rightarrow (1.26, 1.46)$

• Despite strong localisation, no significant displacement

Reason:

if velocity in advective term is supposed to cause dislocation on equilibrium scales, then it should be comparable to equilibrium-scale velocity, i.e. c_s \Rightarrow would require $M_{ExB} \sim 1$

1) Stability valley, proposed by linear flux-tube theory, also seems to exist in nonlinear full-flux-surface setup

- 1) Stability valley, proposed by linear flux-tube theory, also seems to exist in nonlinear full-flux-surface setup
- 2.1) Turbulence is not heavily localised on the surface for most cases, in agreement with global simulations
- 2.2) Radial electric field does not seem to cause severe dislocation of fluctuations

- 1) Stability valley, proposed by linear flux-tube theory, also seems to exist in nonlinear full-flux-surface setup
- 2.1) Turbulence is not heavily localised on the surface for most cases, in agreement with global simulations
- 2.2) Radial electric field does not seem to cause severe dislocation of fluctuations

Probably encouraging for experimentalists

- 1) Stability valley, proposed by linear flux-tube theory, also seems to exist in nonlinear full-flux-surface setup
- 2.1) Turbulence is not heavily localised on the surface for most cases, in agreement with global simulations
- 2.2) Radial electric field does not seem to cause severe dislocation of fluctuations
- 3) Low-mirror-ITG also seems to be stabilised for experimentally relevant gradients

Probably encouraging for experimentalists

- 1) Stability valley, proposed by linear flux-tube theory, also seems to exist in nonlinear full-flux-surface setup
- 2.1) Turbulence is not heavily localised on the surface for most cases, in agreement with global simulations
- 2.2) Radial electric field does not seem to cause severe dislocation of fluctuations
- 3) Low-mirror-ITG also seems to be stabilised for experimentally relevant gradients

Probably encouraging for experimentalists

Wait for OP2 experiments

- 1) Stability valley, proposed by linear flux-tube theory, also seems to exist in nonlinear full-flux-surface setup
- 2.1) Turbulence is not heavily localised on the surface for most cases, in agreement with global simulations
- 2.2) Radial electric field does not seem to cause severe dislocation of fluctuations
- 3) Low-mirror-ITG also seems to be stabilised for experimentally relevant gradients
- 4) FFS simulations with finite a/LTe show significant disagreement with FT simulations, highlighting the importance of surface-effects for realistic scenarios

Probably encouraging for experimentalists

Wait for OP2 experiments