
PEdestal Neural Network
(PENN) in ETS v5

Andreas Gillgren
Chalmers University of Technology

16 September 2020

andreas.gillgren@chalmers.se 1

Previously called paraPED

Outline
● Database
● Training Neural Networks
● Predictions in ETS
● Error estimation
● Electrons/Ions
● Test case
● Future plans

2

Database
We have a pedestal database from JET (EUROfusion JET pedestal database, created by Lorenzo Frassinetti)

● H-mode plasmas
● ~ 2000 data entries (shot 73342 - shot 92489)

3

Database

4

Filter data before training neural network

● Look at parameter distribution
● Exclude data with placeholders (-1 for missing data)
● Also important for choosing parameters

BetaN Effective Mass

Deuterium dominated

Hydrogen dominated

Database
● Choice of parameters

5

Input parameters

Beta_N (MHD)

I_p (plasma current)

B_0 (toroid field)

R_0 (major radius)

a (minor radius)

Elongation

Upper triangularity

Lower triangularity

P_tot (total power input)

q95

Plasma volume

Neural Networks

Outputs (predictions)

Pedestal temperature (height)

Pedestal density (height)

*We train 2 separate neural networks, both
with the same inputs, but with different
outputs

Training Neural Networks
We feed the ~ 2000 data entries through the Neural Networks

6

Input parameters Neural Networks
(with internal weight
and bias parameters)

Outputs

(predictions)

Compare with true

pedestal values from

database

Backpropagation to adjust

weights of Neural Networks,

guided by error in prediction

Feed Forward neural network

2 hidden layers

Predictions in ETS
● Once the Neural Networks are trained, we transfer the optimized weights to ETS
● This allows for quick predictions since the training needs to be done only once before the actual

implementation
● In RC version, PENN will be available in next tag

7

Local CPU/GPU

● Filter data
● Training

Neural Network
weights

 ETS v5

● Python script in kplots
● pedestal actor in

Convergence loop/update plasma
● Instead of inputs from pedestal data

base, we import the parameters
from CPOs: coreprof, equilibrium,
etc...

*On our local CPU/GPU, we use machine learning packages such as
Tensorflow and Keras, but we do not need the packages in ETS since the
training is already complete (the prediction part post training is
straightforward to code compared to the training)

Predictions in ETS

8

Activate PENN in convergence loop actor

Predictions in ETS

9

Also need to adjust position of
boundary condition in “before the
time evolution”

For now, the position has to be
the same for temperature and
density. We are working on having
different positions as an option

For predictive runs, change
“profile_from_input CPO” to
something else, for instance,
value

Now, we are ready to run it!

Predictions in ETS

10

1

2

3

Temperature/density

Normalized rhotor pos

1. The predictions are made for the pedestal top and
new boundary conditions are set

2. The region between the pedestal top and last
closed flux surface is adjusted using tanh function
to ensure continuity (this is our best current
method, but other options might be available later)

3. The inner part is calculated using transport
equations with the new boundary condition

* A new prediction is made at the first
iteration in the convergence loop for each
new time step (this is adjustable)

Error estimation

11

To estimate error/accuracy of the model, we can exclude some data during training
phase and test towards it (test set)

Error estimation

12

Another approach to estimate uncertainty: train several neural networks on same
data and compare predictions! (different initial weights will give slightly different neural networks)

Beta_N (MHD)

I_p (plasma current

B_0 (toroid field)

R_0 (major radius)

a (minor radius)

Elongation

Upper triangularity

Lower triangularity

P_tot (total power input)

q95

Plasma volume

NN 4

Temperature 1
Temperature 2
Temperature 3
Temperature 4

Final prediction:
mean temperature

Relative
uncertainty/error:
where a is the standard deviation of the
predictions and V is the mean value

*We currently train 10
Neural Networks for each
quantity

Same method as in “Self-consistent core-pedestal transport simulations with neural network accelerated models”, O.Meneghini, et al. 2017

Electrons/Ions

13

Only electrons in database -> We can only predict electron temperature and density

Current solution for Ion temperature: 𝜏 (adjustable in pedestal actor,
currently set to 0.9)

For ion density, we use the initial ratio between the densities of the ion species, then
we enforce quasineutrality with this ratio (since we know the electron density from
predictions). This quasineutrality is not exact since we do not include, for instance,
impurities.

Test case (prerequisites)

14

When testing PENN, it is an
advantage if the input
parameters are within the
training range (otherwise,
the user will get a warning in
the interaction tab)

The database consists of
mainly deuterium plasma,
we cannot expect great
accuracy when looking at
other cases

Test case

15

tokamak = jet

shot = 92436

Here, we start with initial temperature profiles
from CPO, then evolve it in time using PENN

With new boundary conditions, the red profile
(electron temperature) shifts upwards

We have some non-smooth behaviour at the
pedestal top. A remedy for this would be to
make the outer tanh part actively fit the
derivative of the inner profile

However, this is not straightforward since the
inner part is calculated with the transport
equations after the outer part is already set

rhotor

Test case

16

Andreas Gillgren

Future plans

17

Apart from features regarding PENN, we work on also making it available for ETS v6

● TCI
● Fortran version

The main job is to adjust how inputs and outputs of the model are handled

18

Thanks for listening!

Questions?

