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Database
We have a pedestal database from JET (EUROfusion JET pedestal database, created by Lorenzo Frassinetti)

● H-mode plasmas 
● ~ 2000 data entries (shot 73342 - shot 92489)
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Database
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Filter data before training neural network

● Look at parameter distribution
● Exclude data with placeholders (-1 for missing data) 
● Also important for choosing parameters

BetaN Effective Mass

Deuterium dominated

Hydrogen dominated



Database
● Choice of parameters
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Input parameters

Beta_N (MHD)

I_p (plasma current)

B_0 (toroid field)

R_0 (major radius)

a (minor radius)

Elongation

Upper triangularity

Lower triangularity

P_tot (total power input)

q95

Plasma volume

Neural Networks

Outputs (predictions)

Pedestal temperature (height)

Pedestal density (height)

*We train 2 separate neural networks, both 
with the same inputs, but with different 
outputs



Training Neural Networks
We feed the ~ 2000 data entries through the Neural Networks
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Input parameters Neural Networks
(with internal weight 
and bias parameters)

Outputs

(predictions)

Compare with true 

pedestal values from 

database

Backpropagation to adjust 

weights of Neural Networks, 

guided by error in prediction

Feed Forward neural network

2 hidden layers 



Predictions in ETS
● Once the Neural Networks are trained, we transfer the optimized weights to ETS
● This allows for quick predictions since the training needs to be done only once before the actual 

implementation
● In RC version, PENN will be available in next tag
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Local CPU/GPU

● Filter data
● Training

Neural Network 
weights

                          ETS v5

● Python script in kplots
● pedestal actor in 

Convergence loop/update plasma
● Instead of inputs from pedestal data 

base, we import the parameters 
from CPOs: coreprof, equilibrium, 
etc...

*On our local CPU/GPU, we use machine learning packages such as 
Tensorflow and Keras, but we do not need the packages in ETS since the 
training is already complete (the prediction part post training is 
straightforward to code compared to the training)



Predictions in ETS
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Activate PENN in convergence loop actor



Predictions in ETS
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Also need to adjust position of 
boundary condition in “before the 
time evolution”

For now, the position has to be 
the same for temperature and 
density. We are working on having 
different positions as an option

For predictive runs, change 
“profile_from_input CPO” to 
something else, for instance, 
value

Now, we are ready to run it!



Predictions in ETS
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1

2

3

Temperature/density 

Normalized rhotor              pos

1. The predictions are made for the pedestal top and 
new boundary conditions are set

2. The region between the pedestal top and last 
closed flux surface is adjusted using tanh function 
to ensure continuity (this is our best current 
method, but other options might be available later)

3. The inner part is calculated using transport 
equations with the new boundary condition

* A new prediction is made at the first 
iteration in the convergence loop for each 
new time step (this is adjustable)



Error estimation
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To estimate error/accuracy of the model, we can exclude some data during training 
phase and test towards it (test set)



Error estimation
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Another approach to estimate uncertainty: train several neural networks on same 
data and compare predictions! (different initial weights will give slightly different neural networks)

Beta_N (MHD)

I_p (plasma current

B_0 (toroid field)

R_0 (major radius)

a (minor radius)

Elongation

Upper triangularity

Lower triangularity

P_tot (total power input)

q95

Plasma volume

NN 4

Temperature 1 
Temperature 2 
Temperature 3 
Temperature 4

Final prediction: 
mean temperature

Relative 
uncertainty/error:
where a is the standard deviation of the 
predictions and V is the mean value

*We currently train 10 
Neural Networks for each 
quantity

Same method as in “Self-consistent core-pedestal transport simulations with neural network accelerated models”,  O.Meneghini, et al. 2017



Electrons/Ions
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Only electrons in database -> We can only predict electron temperature and density

Current solution for Ion temperature:               𝜏      (adjustable in pedestal actor, 
currently set to 0.9)

For ion density, we use the initial ratio between the densities of the ion species, then 
we enforce quasineutrality with this ratio (since we know the electron density from 
predictions). This quasineutrality is not exact since we do not include, for instance, 
impurities.



Test case (prerequisites)
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When testing PENN, it is an 
advantage if the input 
parameters are within the 
training range (otherwise, 
the user will get a warning in 
the interaction tab)

The database consists of 
mainly deuterium plasma, 
we cannot expect great 
accuracy when looking at 
other cases 



Test case
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tokamak = jet

shot        =  92436

Here, we start with initial temperature profiles 
from CPO, then evolve it in time using PENN

With new boundary conditions, the red profile 
(electron temperature) shifts upwards

We have some non-smooth behaviour at the 
pedestal top. A remedy for this would be to 
make the outer tanh part actively fit the 
derivative of the inner profile

However, this is not straightforward since the 
inner part is calculated with the transport 
equations after the outer part is already set

rhotor



Test case
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Future plans
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Apart from features regarding PENN, we work on also making it available for ETS v6

● TCI  
● Fortran version

The main job is to adjust how inputs and outputs of the model are handled
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Thanks for listening!

Questions?


