QLKNN-hyper-10D in integrated modelling Introducing QLKNN-hyper-10D and family

Karel van de Plassche¹

J. Citrin¹, C. Bourdelle², Y. Camenen³, F. J. Casson⁴, F. Felici⁵, P. Horn^{1,6} A. Ho¹, M. Marin¹, S. Van Mulders⁵, F. Koechl⁴, and JET Contributors^{*}

and countless Master students

¹DIFFER, PO Box 6336, 5600 HH Eindhoven, The Netherlands ²CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France ³CNRS, Aix-Marseille Univ., PIIM UMR7345, Marseille, France ⁴ CCFE, Culham Science Centre, OX14 3DB, Abingdon, UK
 ⁵ EPFL-SPC, CH-1015, Lausanne, Switzerland
 ⁶ CASA, Eindhoven University of Technology, Eindhoven, The Netherlands

* See the author list of E. Joffrin et al. 2019 Nucl. Fusion 59 112021

September 16th, 2020

Section A QLKNN in JINTRAC and RAPTOR; PoP2020

- ① QLKNN in JINTRAC and RAPTOR; PoP2020
- 2 Application of PoP QLKNN to ITER cases
- **3** Planned extensions to QLKNN model

QuaLiKiz: fast and accurate reduced turbulence model

- Reduced quasi-linear gyrokinetic code
- Multiple examples of agreement with experiments^{1,2,3,4,5,6}
- 6 orders of magnitude faster than nonlinear calculations
 - Still in agreement with nonlinear flux ^{7,8}
- 10 CPU seconds to calculate turbulent fluxes at a single radial position
- QuaLiKiz + JINTRAC: O(24) hrs per second of JET

Open source: see http://qualikiz.com for more information

- ²J. Citrin PPCF 2017
- ³S. Breton NF 2018
- ⁴O. Linder NF 2019
- ⁵A. Ho NF 2019
- ⁶F. Casson NF 2020
- ⁷A. Casati NF 2009
- ⁸I. Citrin NF 2012

¹C. Bourdelle PPCF 2016

Faster modelling by replacing QuaLiKiz ...

Local dimensionless plasma parameters

... by fast Neural Network

Local dimensionless plasma parameters

Large dataset of 3e8 QuaLiKiz points has been generated

	variable	# points	min	max
	$k_{ heta} ho_s\leq 2$	10	0.1	2
	$k_{ heta} ho_{s}>2$	8	3.5	36
	R/L_{T_e}	12	0	14
Dataset spans wide	R/L_{T_i}	12	0	14
core-relevant regime, and	R/L_n	12	-5	6
is freely available on Zenodo:	q	10	0.66	15
doi.org/10.5281/zenodo.3497065,	ŝ	10	-1	5
online visualization	r/R	8	0.03	0.33
	T_i/T_e	7	0.25	2.5
	$ u^*$	6	$1 imes 10^{-5}$	1
	Z _{eff}	5	1	3
	Total flux calculations	$3 imes 10^8$	$\approx 1.3 \mathrm{MCPUh}$	

Benchmark: good match between QLKNN and QuaLiKiz

Simplified physics case

Based on high performance baseline JET92436 [A. Ho et al. NF 2019]

No full QuaLiKiz surrogate, but most important features are captured

Full physics case, based on high performance hybrid [Casson IAEA 2018] Parameters not included in QLKNN (e.g. γ_E , α , $R/L_{T_{i,imp}}$) can play a role; still good match!

Essential: Capture physics in the surrogate model

Same threshold for all transport channels $(q_{i,e}, \Gamma_e)$ essential

- Global regression measures less important than local features
- Global RMS error weak indicator of surrogate model quality

Essential for integrated modelling: Include this in surrogate model.

Example of matching ITG temperature gradient critical thresholds

Physics-unaware: Less quality for the same fit quality!

Full physics case, based on high performance hybrid [Casson IAEA 2018] NO special cost function, NO special train targets, *same RMS of fit!* (see QLKNN-hyper structure)

JINTRAC-QLKNN-hyper-10D vs a network trained on the full fluxes at t=22.75s [K.L. van de Plassche et al. PoP 2020] K.L. van de Plassche | QLKNN-hyper-10D September 16th, 2020

QLKNN enables modelling of transport in seconds

• QLKNN integrated in RAPTOR

- ND-in, ND-out QLKNN + Jacobians
- \sim 270ms per profile (9 radial points, spline base)
- ~**7s per second** *of JET (dynamic, flattop)*
- WIP: MKL and MPI acceleration

QLKNN integrated in JINTRAC

- ND-in, ND-out QLKNN
- \sim 5ms per profile (25 radial points, finite differences)
- ~15s per second of JET (dynamic, flattop)
- WIP: MKL acceleration
- Simulations at unprecedented speeds: 3-5 orders of magnitude over QuaLiKiz+JINTRAC

QLKNN ready for testing

- QLKNN integrated in RAPTOR
 - QLKNN-hyper-10D version ready for users
- QLKNN integrated in JINTRAC
 - QLKNN-hyper-10D version ready for users, drop in for QuaLiKiz (usenn=1)
- QLKNN integrated in METIS
 - QLKNN-hyper-10D integrated since 07 Aug 2020, did not try myself!
- QLKNN soon to be available in ETSv6 (hopefully..)
- QLKNN transport model freely available in standalone
 - Visit qualikiz.com
 - Fortran, Python and MATLAB available: wikis/QLKNN/QLKNN-hyper
 - Small caveat, developer-oriented interface, user-friendliness WIP
- Paper available in Physics of Plasmas: doi/10.1063/1.5134126

Section **B**

Application of PoP QLKNN to ITER cases

1 QLKNN in JINTRAC and RAPTOR; PoP2020

2 Application of PoP QLKNN to ITER cases

3 Planned extensions to QLKNN model

Testing QLKNN in new regimes

Training set was designed to have a wide validity regime

- Chosen on our estimate of large-aspect ratio tokamak parameters
- Worked out of the box for JET

HOWEVER, there is no thing like testing!

- Neural network models extrapolate poorly outside training set regimes
 - QLKNN-hyper-10D, sacrifices robustness for speed
- Our experience might be biased
 - BUT: We did consult other experts, thanks C. Bourdelle and Y. Camenen!
- Our "physics informed" strategy could be robust to extrapolation
 - BUT: Always check if we are extrapolating a posteriori

Advantage of theory-based NNs: Improving validity regime

We can check how well the shots match the QLKNN assumptions a-priori

- Full QuaLiKiz uses $s \alpha$ geometry
- QLKNN-hyper has $\alpha = 0$ in training set, bad assumption for some shots!
- Challenge: Extending training set with α would take multi-MCPUh
- Solution: Capture effect of α by modifying \hat{s} input
- Rule-of-thumb based on initial dedicated QLK scans: $\hat{s}_{eff} = \hat{s} \alpha/2$

Speed of QLKNN-hyper now being leveraged for off-line scenario optimization. Proof-of-principle with EC deposition q-profile optimization for ITER hybrid scenario.

Full optimization takes only few minutes [S. Van Mulders, F. Felici et al.]

New regime: ITER baseline

Very encouraging early results, similar performance as for JET in PoP2020 Based on [F. Koechl *et al.* IAEA 2018, P. Mantica *et al.* PPCF 2020]

New regime: ITER hybrid

Reference run for WIP optimization exercise. α rule important for hybrid scenario due to large \hat{s} and large α . Based on [J. Citrin *et al.* NF 2010]

Section C

Planned extensions to QLKNN model

1 QLKNN in JINTRAC and RAPTOR; PoP2020

- 2 Application of PoP QLKNN to ITER cases
- **3** Planned extensions to QLKNN model

QLKNN family: Investigate NN train strategies

Designing machine learning models is an art in itself

- Depending on strategy, model might not train
 - Millions of free parameters
 - NN training is a highly-dimensional non-convex optimization
- Design decisions might influence applicably of resulting model
- Different use cases might have different demands

Solution: The QLKNN family, extending QLKNN-hyper-10D

- Investigate behaviour of different strategies
- Mixed strategies possible, but not treated here

Include physics in network structure: QLKNN-hyper

General unconstrained 'combined NN' K.L. van de Plassche | QLKNN-hyper-10D September 16th, 2020 For ITG general input \mathbf{x}_g and special input x_s

$$\mathbf{x}_g \in \{R/L_{T_e}, R/L_n, q, ..., Z_{eff}\}$$

 $x_s \in \{R/L_{T_i}\}$

 $\begin{aligned} & \mathsf{QLKNN-hyper} \\ & q_e(\mathbf{x}_g, x_s) = \mathsf{NN}_{q_e/q_i}(\mathbf{x}_g, x_s) * \mathsf{NN}_{q_i}(\mathbf{x}_g, x_s) \\ & q_i(\mathbf{x}_g, x_s) = \mathsf{NN}_{q_i}(\mathbf{x}_g, x_s) \\ & \Gamma_e(\mathbf{x}_g, x_s) = \mathsf{NN}_{\Gamma_e/q_i}(\mathbf{x}_g, x_s) * \mathsf{NN}_{q_i}(\mathbf{x}_g, x_s) \end{aligned}$

QLKNN family: Include relevant physics in different ways

- We want to approximate the full QuaLiKiz model including isotopes, impurities
 - Challenge: Needs larger dataset, make sure QuaLiKiz is okay
 - Solution: Extend dataset \Rightarrow QLKNN-hyper-11D
- We want to include physics rigorously
 - Solution: include physics in network architecture itself: QLKNN-HornNet (P. Horn et al., in preparation)
 - Solves challenge: Combing QLKNN-hyper nets compounds errors
 - Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom.
 - WIP: Currently being tested in JINTRAC
- We want to approximate the full QuaLiKiz model
 - Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUhl

 - New challenge: Need large database of profiles of different machines
 - WIP: Publishing paper for JINTRAC and JET, testing ASDEX dataset creation

QLKNN-hyper-11D: Extend to isotopes and impurities

- Extend dataset with impurity density gradients
- Includes updates to physics and numerics, see QuaLiKiz-2.8.0
- Final testing in progress before launching run
- Data generation and managing pipeline ready to go

variable	# points	min	max
$k_{ heta} ho_s\leq 2$	10	0.1	2
$k_{ heta} ho_{s}>2$	8	3.5	36
R/L_{T_e}	11	0	14
R/L_{T_i}	11	0	14
R/L_{n_e}	11	-5	5
$R/L_{n_{i,0}}$	12	-15	15
q	9	0.66	10
ŝ	9	-1	4
r/R	8	0.1	0.9
T_i/T_e	7	0.25	2.5
$ u^*$	5	0	0.1
n _i /n _e	4	0	0.3
Total flux calculations	$2 imes 10^9$	$pprox 8\mathrm{MCPUh}$	

QLKNN family: Include relevant physics in different ways

- We want to approximate the full QuaLiKiz model including isotopes, impurities
 - Challenge: Needs larger dataset, make sure QuaLiKiz is okay
 - Solution: Extend dataset \Rightarrow QLKNN-hyper-11D

• We want to include physics rigorously

- Solution: Include physics in network architecture itself: *QLKNN-HornNet* (P. Horn *et al.*, in preparation)
- Solves challenge: Combing QLKNN-hyper nets compounds errors
- Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom
- WIP: Currently being tested in JINTRAC
- We want to approximate the full QuaLiKiz model
 - Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUhl

 - New challenge: Need large database of profiles of different machines
 - WIP: Publishing paper for JINTRAC and JET, testing ASDEX dataset creation

QLKNN family: Include relevant physics in different ways

- We want to approximate the full QuaLiKiz model including isotopes, impurities
 - Challenge: Needs larger dataset, make sure QuaLiKiz is okay
 - Solution: Extend dataset \Rightarrow QLKNN-hyper-11D

• We want to include physics rigorously

- Solution: Include physics in network architecture itself: *QLKNN-HornNet* (P. Horn *et al.*, in preparation)
- Solves challenge: Combing QLKNN-hyper nets compounds errors
- Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom
- WIP: Currently being tested in JINTRAC
- We want to approximate the full QuaLiKiz model
 - Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUhl
 - * Solution: Base on experimental data \Rightarrow QLKNN-Jetexp (A. Ho et al., on EuroFusion pinboard#2118)
 - New challenge: Need large database of profiles of different machines
 - WIP: Publishing paper for JINTRAC and JET, testing ASDEX dataset creation

Include physics in network structure: QLKNN-HornNet

New work by P. Horn, K.L. van de Plassche et al.

• Inspired by late-fusion techniques in QLKNN-hyper- $\alpha = 0$ [F. Felici *et al.*] on ITER hybrid with $\alpha \neq 0$ rule-of-thumb $\hat{s}_{eff} = \hat{s} - \alpha/2$ in RAPTOR [S. Van Mulders *et al.*]

Strategy: Force a Critical Gradient Model *directly into network architecture*

- Pro: Still general, but smooth 1st derivative of IO mapping
- Pro: Simple input/output derivatives
- Pro: Very sharp turbulent threshold

Combining CGM and NNs: The power of general NN tools

NN training techniques can be applied to arbitrary functions. So we can include a Critial Gradient Model as such:

QLKNN-HornNet

$$q_{e}(\mathbf{x}_{g}, x_{s}) = c_{3,e}R(x_{s} - c_{1})(|x_{s} - c_{1}|)^{c_{2,e}}$$
$$q_{i}(\mathbf{x}_{g}, x_{s}) = c_{3,i}R(x_{s} - c_{1})(|x_{s} - c_{1}|)^{c_{2,i}}$$
$$\Gamma_{e} = NN(\mathbf{x}_{g}, x_{s})R(x_{s} - c_{1})$$

"slope" $c_{3,[i,e]}(\mathbf{x}_g)$ "threshold location" $c_1(\mathbf{x}_g)$ "bendiness" $c_{2,[i,e]}(\mathbf{x}_g)$ network output $NN(\mathbf{x}_g, x_s)$ Rectifier $R(\cdot)$

Gives a well-constrained neural network model

Standalone QLKNN-HornNet performs well

- Shown in [P. Horn *et al.* MSc. thesis]
- Shows "bendiness" of QLKNN-hyper
- Warning: Bad slice of QLKNN-hyper, good slice of QLKNN-HornNet
- WIP: Testing in JINTRAC. Paper to be submitted

QLKNN family: Include relevant physics in different ways

- We want to approximate the full QuaLiKiz model including isotopes, impurities
 - Challenge: Needs larger dataset, make sure QuaLiKiz is okay
 - Solution: Extend dataset \Rightarrow QLKNN-hyper-11D

• We want to include physics rigorously

- Solution: Include physics in network architecture itself: *QLKNN-HornNet* (P. Horn *et al.*, in preparation)
- Solves challenge: Combing QLKNN-hyper nets compounds errors
- Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom
- WIP: Currently being tested in JINTRAC
- We want to approximate the full QuaLiKiz model
 - Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUh!
 - Solution: Base on experimental data \Rightarrow *QLKNN-jetexp* (A. Ho *et al.*, on **EuroFusion pinboard#2118**)
 - New challenge: Need large database of profiles of different machines
 - WIP: Publishing paper for JINTRAC and JET, testing ASDEX dataset creation

QLKNN family: Include relevant physics in different ways

- We want to approximate the full QuaLiKiz model including isotopes, impurities
 - Challenge: Needs larger dataset, make sure QuaLiKiz is okay
 - Solution: Extend dataset \Rightarrow QLKNN-hyper-11D

• We want to include physics rigorously

- Solution: Include physics in network architecture itself: *QLKNN-HornNet* (P. Horn *et al.*, in preparation)
- Solves challenge: Combing QLKNN-hyper nets compounds errors
- Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom
- WIP: Currently being tested in JINTRAC
- We want to approximate the full QuaLiKiz model
 - Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUh!

 - New challenge: Need large database of profiles of different machines
 - WIP: Publishing paper for JINTRAC and JET, testing ASDEX dataset creation

QLKNN-jetexp-15D highlight

Showing the necessity of proper data analytics and physics background [A. Ho et al.: Neural network surrogate of QuaLiKiz using JET experimental data to populate training space]

Non-planned extensions to QLKNN model

• I just want a non-physics informed QLKNN!

- Solution: Do a naive fit \Rightarrow *QLKNN-fullflux*
- Con: No longer under development
- Con: Your integrated modelling will be of poor quality

• I do not trust your methodology!

- Solution: Train yourself! Data here: doi.org/10.5281/zenodo.3497065
- Con: Might be more work than you signed up for

QLKNN: Integration in other frameworks

QLKNN-hyper-10D integrated in various levels of matureness in multiple transport frameworks

- ETS/TCI: P. Strand, K.L. van de Plassche et al.
- ASTRA: M. Bergmann et al.
- METIS: JF. Artaud et al.
- IMAS: CS. Byun et al.

Section D

Wrap-up

1 QLKNN in JINTRAC and RAPTOR; PoP2020

- **2** Application of PoP QLKNN to ITER cases
- **3** Planned extensions to QLKNN model

4 Wrap-up

Conclusion

QLKNN-hyper-10D model:

- is *ready for exploitation* in RAPTOR and JINTRAC
- is being integrated in *multiple frameworks*
- enables QuaLiKiz approximation 3-5 orders of magnitude faster

Improvements to QuaLiKiz and its family of surrogate models is ongoing

Backup

Wide parameter ranges

variable																		
$k_{\theta} \rho_s$	0.1	0.175	0.25	0.325	0.4	0.5	0.6	0.8	1	2	3.5	6	10.5	15	19.5	24	30	36
$-\frac{R}{T_i}\frac{dT_i}{dr}$	0	2	2.75	3.5	4.25	5	5.75	6.5	7.25	8	10	14						
$-\frac{R}{T_e}\frac{dT_e}{dr}$	0	2	2.75	3.5	4.25	5	5.75	6.5	7.25	8	10	14						
$-\frac{R}{n}\frac{dn}{dr}$	-5	-3	-1	0	0.5	1	1.5	2	2.5	3	4	6						
q_{\times}	0.66	1	1.5	2	2.5	3	4	5	10	15								
ŝ	-1	0.1	0.4	0.7	1	1.5	2	2.75	3.5	5								
r/R	0.03	0.07	0.11	0.15	0.19	0.23	0.28	0.33										
$\frac{T_i}{T_e}$	0.25	0.5	0.75	1	1.33	1.66	2.5											
ν^*	1.00E-05	1.00E-03	1.00E-02	7.00E-02	3.50E-01	1												
Z _{eff}	1	1.3	1.7	2.2	3													

 $Total \qquad 3\times 10^8 \ \approx 1.3\,{\rm MCPUh}$

QuaLiKiz simplifications

- Low Mach number
- Electrostatic limit
- Eigenfunction assumed to be a (shifted) Gaussian, with width and shift solved from a high-frequency expansion of the dispersion relation
- Shifted circle geometry ($s \alpha$) with small inverse aspect ratio
- For passing particles: since v_{||} >> v_⊥, a pitch angle averaged transit frequency as well as curvature and ∇B drift frequencies are performed.
- For trapped particles: since the bounce frequency is larger than *ω*, a bounced average is performed.
- Only collisions for trapped electrons are taken into account using a Krook type collision operator.
- Particle trajectories are strongly passing or strongly trapped

Simple building block: single neural network neuron

Nonlinear activation function f (e.g. tanh) and weights w_i and biases b that are free and optimized (training)

Universal approximator: Feed-Forward Neural Network

- Approximate any function up to arbitrary error
- Analytical: Jacobians 'for free' implicit solvers and trajectory optimization
- Many free parameters, which are optimized/trained

Edge-focussed dataset generated (J. van Galen MSc)

variable	# points	min	max
$k_{ heta} ho_s$	18	0.1	36
$-\frac{R}{T_{i,e}}\frac{\mathrm{d}T_{i,e}}{\mathrm{d}r}$	11	0	150
$-\frac{R}{n}\frac{\mathrm{d}n}{\mathrm{d}r}$	9	0	30
q_{\times}	10	2	30
ŝ	10	1	20
r/R	1	0.95	0.95
$\frac{T_i}{T_e}$	1	1	1
ν^*	10	.1	.99
Z _{eff}	6	1	4
Total	$8 imes 10^5$		

Solving threshold matching: leading-flux fitting

Thoroughly tested and working

Mode	Leading flux	′div′s
ETG	q_e	$oldsymbol{q}_i/oldsymbol{q}_e$
ITG	q_i	$q_e/q_i, \Gamma_e/q_i, \Gamma_i/q_i, D_e/q_i, V_i/q_i$
TEM	q_e	$q_i/q_e, \Gamma_e/q_e, \Gamma_i/q_e, D_e/q_e, V_i/q_e$

Then i.e.

 $q_{e,ETG}$ $q_{e,ETG} * rac{q_{i,ETG}}{q_{e,ETG}} = q_{i,ETG}$

is perfectly threshold matched

Solving popback and threshold: cost function

Tested and working, giving reduction in popback. Similar for 7D and 9D.

KL van d

Sentemb

$$C = C_{good} + C_{regu} + \underbrace{C_{stab}}_{new}$$

$$C_{good} = \begin{cases} \frac{1}{n} \sum_{i=1}^{n} (QLK_i - NN_i)^2, & \text{if } QLK_i \neq 0\\ 0, & \text{if } QLK_i = 0 \end{cases}$$
Sharp threshold
$$C_{regu} = \lambda_{L2} \sum_{i=1}^{k} w_i^2$$

$$C_{stab} = \begin{cases} 0, & \text{if } QLK_i \neq 0\\ \frac{\lambda_{stab}}{n} \sum_{i=1}^{n} NN_i - c_{stab}, & \text{if } QLK_i = 0 \end{cases}$$
Reduce popback
de Plassche | QLKNN-hyber-10D

Integrated modelling: pathway to full-device modelling

Solver for transport equations coupled with models for sources, sinks, different fluxes etc.

[J. Citrin: Frontiers and interfaces York 2018]

ExB suppression rule

'rotation rule' scales **all fluxes** with $f_{vic}(q, \hat{s}, \epsilon)$ and rotationless growth rate γ_0 which is predicted by a NN.

- Based on new linear GENE scans of new linear-GENE scans of q, ϵ , and \hat{s}
- Includes ExB stabilisation and PVG destabilisation

$$f_{vicnum} = c_1 q + c_2 * \hat{s} + c_3/\epsilon - c_4$$

$$f_{vic} = \max(1 + f_{vicnum}\gamma_E/\gamma_0, 0$$

$$q_{i/e,ITG/TEM} = f_{vic} * q_{i/e,ITG/TEM}$$

$$D_{i/e,ITG/TEM} = f_{vic} * D_{i/e,ITG/TEM}$$

$$V_{i/e,ITG/TEM} = f_{vic} * V_{i/e,ITG/TEM}$$

$$\Gamma_{i/e,ITG/TEM} = f_{vic} * \Gamma_{i/e,ITG/TEM}$$

QLKNN-10D drivers

Development (analysis, training, etc) in Python. NN prediction drivers in:

- Pure-python: https://github.com/Karel-van-de-Plassche/QLKNN-develop
- Fortran (MATLAB+Python wrappers): https://github.com/QuaLiKiz-group/QLKNN-fortran
- Network weights and biases: https://gitlab.com/qualikiz-group/QLKNN-hyper

Turbulent transport == fusion performance

Temperature and density influence the fusion power.

 $P_{fusion} \propto n^2 \, T^2$

Gradients drive turbulent heat flux, limiting achievable temperatures

Tokamak core transport: 1D power balance

Dominated by turbulent particle flux Γ_s and heat flux q_s .

$$\frac{\partial n_{s}}{\partial t} + \frac{\partial}{\partial r} \left(\Gamma_{s} \right) = S_{s}$$
$$\frac{3}{2} \frac{\partial P_{s}}{\partial t} + \frac{\partial}{\partial r} \left(q_{s} \right) = Q_{s}$$

Relatively simple problem IF one knows the turbulent fluxes!

Tokamak core transport: Vlasov equation

3D spatial + 3D velocity + time, coupled partial differential equations...

$$\begin{bmatrix} \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla + \frac{q_s}{m_s} \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \cdot \frac{\partial}{\partial \mathbf{v}} \end{bmatrix} f_s = C_s f_s + S_s$$

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \frac{1}{c} \left(4\pi \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t} \right)$$

Tokamak core transport: Gyrokinetics

First simplification, average over gyrofrequency \rightarrow gyrokinetics

[Ethier JPCS 2005]

Tokamak core transport: quasi-linear reduced gyrokinetics

"Bath of linear-like fluctuations whose amplitude and wavenumber spectra are set by nonlinear physics."

- Fluctuations are relatively small $\mathcal{O}(10\%) \rightarrow \partial n \ll n$
- Linearized Vlasov equation, only ∂f
- Fluxes set by non-linear scaling rule, derived from nonlinear codes
- Many, many more assumptions \rightarrow QuaLiKiz!

QuaLiKiz is fast, but still too slow

Gyrokinetic Simulation	$\mathcal{O}(\textit{time})$ single profile (s)	
Full 5D code (adiabatic electrons	5) 3×10^{10}	
QuaLiKiz	1×10^2	
Feed-Forward Neural Network	1×10^{-3}	
Real-time controller	$\mathcal{O}(1 imes 10^{-3})$	

The trick: use a NN as a surrogate model for QuaLiKiz.

Capture of non-smooth behaviour essential

Capture of non-smooth behaviour essential

Turbulence has very nonlinear bahaviour in 9D

9D NNs trained and embedded in transport frameworks

• 9D Neural Networks trained

- Trained on three main instabilities: ETG, ITG, TEM
- Trained for heat and particle fluxes
- Ion and electron threshold matched
- NNs embedded in transport model RAPTOR (RApid Plasma Transport simulatOR) ⁹
- Several measures of goodness related to underlying physics found
 - Capture of instability threshold (thresh mis)
 - Match of ion and electron particle and heat threshold (thresh mismatch)
 - Stability in expected stable region (pop)
 - Smoothness of unstable region prediction (wobble)

⁹F. Felici PPCF 2012

(earlier version of QLKNN)

Relative temperature $T_i/T_e = 0.25$

(earlier version of QLKNN)

Relative temperature $T_i/T_e = 0.50$

(earlier version of QLKNN)

Relative temperature $T_i/T_e = 1.00$

(earlier version of QLKNN)

Relative temperature $T_i/T_e = 1.33$

(earlier version of QLKNN)

Relative temperature $T_i/T_e = 1.66$

(earlier version of QLKNN)

Relative temperature $T_i/T_e = 2.50$

Lessons learned: Tensorflow is optimized for deep learning

Sometimes surprising bottlenecks, probably more so for higher-level codes! Runtime for one epoch, 2.10⁷ samples.

Machine	Backprop [ms]	CPU shuffle [ms]	dataset API shuffle [ms]
CPU (4x3 GHz)	260	100	200
GPU Quadro K420	190	100	200
GPU Quadro K620	125	100	200
GPU Tesla P100	7	100	200

My choice of tools

- Plotting: bokeh, seaborn, matplotlib
- Machine Learning: TensorFlow (keras?)
- Automation: Luigi
- Speed: Intel MKL (C/F)

Bokeh Tensorflow

Fast modelling is essential for future tokamaks

Fast modelling enables:

- Optimizing and analysing current experiments
- Extrapolation to future devices
- Real-time control of plasma parameters

Large 9D database generated to train NNs

variable	# points	min	max
$k_{ heta} ho_s$	18	0.1	36
$-\frac{R}{T_e}\frac{\mathrm{d}T_e}{\mathrm{d}r}$	12	0	14
$-\frac{R}{T_i}\frac{\mathrm{d}T_i}{\mathrm{d}r}$	12	0	14
$-\frac{R}{n}\frac{\mathrm{d}n}{\mathrm{d}r}$	12	-5	6
q_{\times}	10	0.66	15
ŝ	10	-1	5
r/R	8	0.03	0.33
$\frac{T_i}{T_e}$	7	0.25	2.5
$ u^*$	6	$1 imes 10^{-5}$	1
Z_{eff}	5	1	3
	wher-10D		

Generated using the QuaLiKizpythontools

K.L. van de Plassepe OLKNN-hyper-10D September 16th, 2020 tal $3 \times 10^8 \approx 1.3 \, \mathrm{MCPUh}$

Conclusion

We have achieved

- Easily extendable gyrokinetic neural network training
- On the largest gyrokinetic database to date
- Accurately predicting turbulent heat transport fluxes
- Enabling unprecedented fast tokamak scenario modelling

JET73342 no rotation

High collisionality case (known underprediction *n*_e QuaLiKiz) [Baoicchi PPCF 2015, Citrin NF 2015]

58/31

JET73342 with rotation

High collisionality case (known underprediction *n*_e QuaLiKiz) [Baoicchi PPCF 2015, Citrin NF 2015]

59/31

JET92398 no rotation

High performance hybrid [Casson IAEA 2018]

JET92398 with rotation

High performance hybrid [Casson IAEA 2018]

JET92398 no rotation

High performance hybrid [Casson IAEA 2018]

JET92436 no rotation

High performance baseline [Ho NF 2019]

JET92436 with rotation

High performance baseline [Ho NF 2019]

64/31

JET73342 no rotation

High collisionality case (known underprediction *n*_e QuaLiKiz) [Baoicchi PPCF 2015, Citrin NF 2015]

65/31

JET92398 no rotation

High performance hybrid [Casson IAEA 2018]

JET92436 no rotation

High performance baseline [Ho NF 2019]

