

# **Overview of TCV shots for proposal detachment at low toroidal field**











This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

# "Long leg" configuration in both field directions



Configuration with longer leg (compared to TCV-X21), detachment reached more easily.

Start from:

 Long leg stable configuration at low field (FF #74565, RF #66125)

#### Add:

- Density ramp

**Results:** 

- 3 good shots in Reversed Field (<u>#76142</u>, #76143, #76190)
- 2 good shots in Forward Field (<u>#76186</u>, #76187)
- 2 good shots with leg moved for RDPA (RF #77043, FF #77044)



| using                 | = | LIUQE.M | LIUQE.M |
|-----------------------|---|---------|---------|
| shot                  | = | 76142   | 76186   |
| t                     | = | +1.123  | +1.123  |
| I <sub>p</sub> [MA]   | = | +0.160  | -0.167  |
| В <sub>0</sub> [Т]    | = | +0.951  | -0.950  |
| li                    | = | +1.000  | +1.045  |
| W <sub>MHD</sub> [MJ] | = | +0.005  | +0.005  |
| $\beta_{t}$ [%]       | = | +0.675  | +0.646  |
| $\beta_{N}$           | = | +0.899  | +0.830  |
| vol                   | = | +1.299  | +1.302  |
| κ                     | = | +1.598  | +1.596  |
| $\delta$              | = | +0.327  | +0.331  |
| $\delta$ top          | = | +0.156  | +0.155  |
| $\delta$ bot          | = | +0.498  | +0.508  |
| q <sub>95</sub>       | = | +3.159  | +3.080  |
| area                  | = | +0.237  | +0.239  |
| R <sub>ax</sub>       | = | +0.902  | +0.896  |
| Zax                   | = | +0.202  | +0.202  |
| gap <sub>in</sub>     | = | +0.033  | +0.028  |
| gap <sub>out</sub>    | = | +0.030  | +0.034  |
| а                     | = | +0.224  | +0.225  |
|                       |   |         |         |

### **Diagnostics measurements different for different shots**



| # Shot | B <sub>t</sub> [T] | I <sub>p</sub> [kA] | ∆t <sub>ramp</sub> [s] | f <sub>GW</sub> max | Diagnostics                           |
|--------|--------------------|---------------------|------------------------|---------------------|---------------------------------------|
| 76142  | 0.95               | 160                 | [1.00 ; 1.48]          | 0.65                | Standard, VIR, MANTIS, DSS            |
| 76143  | 0.95               | 160                 | [1.00 ; 1.58]          | 0.60                | Standard, VIR, MANTIS, DSS            |
| 76190  | 0.95               | 160                 | [0.90 ; 1.61]          | 0.61                | Standard, VIR, HIR, MANTIS, DSS       |
| 77043  | 0.95               | 160                 | [1.00 ; 1.48]          | 0.57                | Standard, VIR, HIR, MANTIS, DSS, RDPA |
| 76186  | -0.95              | -160                | [1.00 ; 1.76]          | 0.63                | Standard, VIR, HIR, MANTIS, DSS       |
| 76187  | -0.95              | -160                | [0.95 ; 1.75]          | 0.64                | Standard, VIR, HIR, MANTIS, DSS       |
| 77044  | -0.95              | -160                | [0.90 ; 1.53]          | 0.59                | Standard, VIR, HIR, MANTIS, DSS, RDPA |

Standard = Langmuir Probes, Thomson, FIR

Others = Vertical/Horizontal InfraRed (VIR/HIR), Multispectral Imaging System (MANTIS), Divertor Spectroscopy System (DSS), Reciprocating Divertor Probe (RDPA)

## LP shows roll-over of flux vs line density





### **MANTIS** shows movement of CIII front



CIII emission identifies plasma temperature ≈ 7eV

Movement of emission front from target  $\rightarrow$  target cooling



#### End of density ramp



#### DSS shows decrease of ionization close to target





- Evaluate correct outer and inner target fluxes, with LP and Infrared cameras
- Evaluate divertor volume temperature, density and plasma potential with the RDPA, comparing with LP and IR (at target)
- Compare divertor conditions with DSS line emission measurements, try to extrapolate molecular activated recombination intensity

