

EUROfusion TSVV-5 Report 2022, Contributions Aalto University, Espoo, Finland

Andreas Holm, Ray Chandra, Mathias Groth

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Plans for 2022

- Re-investigation of impact of H₂ vibrational excitation on dissociation, ionisation and recombination rates, isotope effect
- Assessment of H_COLRAD (He_COLRAD, H2_COLRAD) in EIRENE
- Re-implementation of EIRENE photon tracing and opacity model
- Assessment of isotope effect in JET-ILW EIRENE benchmark case

Plans for 2022 - achievements

- Re-investigation of impact of H₂ vibrational excitation on dissociation, ionisation and recombination rates, isotope effect (Andreas Holm)
 - Different CR processes cause up to 60% difference in dissociation rates
 - Impact strongest in the $T_e = 0.5 4$ eV range, for which molecular processes strongest
 - Molecular-convergent close-coupling (MCCC) data predicts an isotope effect on dissociation for $T_e = 0.7$ -3 eV
- Assessment of H_COLRAD (He_COLRAD, H2_COLRAD) in EIRENE (Ray Chandra)
 - Resurrect ability to run Sawada 1995 and 2004 models standalone
 - Effective ionization rate of H_COLRAD agrees perfectly with AMJUEL data
 - Proposed H_COLRAD, H2_COLRAD (and He_COLRAD)
- Re-implementation of EIRENE photon tracing and opacity model (Ray Chandra)
 - Cylindric test case for Ly-a and Ly-b opacity ⇒ population escape factor and Planck test
- Assessment of isotope effect in JET-ILW EIRENE benchmark case (Mathias Groth)
 - Higher div. densities for T than for H plasmas observed in JET-ILW L-mode plasmas, both experimentally and in EDGE2D-EIRENE simulations

Vib. resolved EIRENE data considers different collisionalradiative (CR) processes than vib. unresolved data

- Different CR processes cause up to 60% difference in dissociation rates
- Impact strongest in the T_e = 0.5–4 eV range, where molecular processes strongest
- Electronic transitions affect T_e > 4 eV
- Vibrational transitions affect T_e < 4 eV

Molecular-convergent close-coupling (MCCC) data [1] predicts an isotope effect on dissociation for T_e =0.7-3 eV

- Predicted isotope effect strongest for temperatures associated with detachment onset and detached conditions
- MCCC data indicates weaker dissociation of both H₂ and D₂ for T_e > 3 eV compared to EIRENE data (AMJUEL, HYDHEL, H2VIBR)

[1] mccc-db.org, accessed July 6th 2022

Mathias Groth | EUROfusion TSVV-5 Report 2022 - Aalto University | Dec 23, 2022 | Page 5

Assessment of H_COLRAD (He_COLRAD and H2_COLRAD) in EIRENE

- H_COLRAD (and H2_COLRAD) based on the collisional radiative model by Sawada (1995) ⇒ used to built AMJUEL and H2VIBR databases
- Resolve population coefficients for each EIRENE cell
- Derive effective rates such as effective ionization and recombination rates to be used in EIRENE
- Provide population densities of excited species as a bulk ion species for the Photon tracing module
- ⇒ Resurrect ability to run Sawada 1995 and 2004 models standalone

The effective ionization rate of H_COLRAD agrees perfectly with AMJUEL data

Effective ionization rate S_{eff} :

$$S_{eff} = S_{(1)} + \sum_{p} \left(C_{(1,p)} - R_{1(p)} (F_{(p,1)} + \frac{A_1}{n_e}) \right)$$

- EIRENE CR = H_COLRAD
- EIRENE AMJUEL = using AMJUEL rates within EIRENE
- AMJUEL last update entry: May 2018

Proposed CRM structure in EIRENE (H_COLRAD)

Proposed H2_COLRAD structure in EIRENE (currently non-existent)

Development of photon tracing test case in simplified geometry

- Cylindrical test case, 20 radial points
- Homogeneous plasma and atomic density
- $T_H = 1 \text{ eV}, n_H = 10^{14} \text{ cm}^{-3},$ b = 5 cm
- Simulated Ly-a and Ly-b photons (2x10⁶) with volumetric sources (H(n=2,3) as bulk ions)
- Line shape only doppler broadening

Photon tracing test case: 2D (or 1D) profiles of the population escape factor: Ly- α and Ly- β opaque at the center

• Text

Workflow and timetable for inclusion of CRM and photon opacity in EIRENE

- Currently existing:
 - H colrad, He colrad
 - Photon module
 - A&M and photon cylinder test cases
- Planned for 2023:
 - CRM-photon coupling (for Planck test)
 - Application of model to full geometry (JET 81472)
 - H_COLRAD data update
 - He_COLRAD testing
 - H2_COLRAD creation

Higher div. densities for T than for H plasmas observed in JET-ILW L-mode plasmas, both exp. and in EDGE2D-EIRENE

- Generic density scan with identical transport coeffs., models
- Strong reduction in ion current to outer plate not yet reproduced ⇒ likely to require changes to transport coefficients
- T_{e,OT} least affected by isotope species

Plans for 2023

- Complete development, implementation and verification of H_COLRAD, He_COLRAD and H2_COLRAD in EIRENE (Ray Chandra: PPCF paper and EPS 2023)
 - Front-end development of H2_COLRAD for fundamental data, including hydrogenic isotopes, parameter dependencies (in collaboration with YACORA team)
- Complete development, implementation and verification of photon tracing and opacity model (Ray Chandra: PPCF paper and EPS 2023)
- Application of H2_COLRAD to JET-ILW L-mode plasmas for three primary SOL regimes: $D_2 \rightarrow H_2$, T_2
- Coupling EIRENE CRM and photon module to B2.5 in SOLPS-ITER
 - Re-run SOLPS-ITER cases for H and T (Mathias Groth: IAEA-FEC 2023)

