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1 Objective

The objective of this document is to provide a concise overview of averaged
turbulence code data which is expected to be helpful for the development of
turbulence closure models to be used in mean-field transport codes.

The turbulence code data, which is expected to have a sufficiently fine spa-
tial and temporal resolution to capture the fine details of the flow fields, lies
at the basis for developing and calibrating the self-consistent turbulence closure
model. Namely by combining and averaging particular quantities of this turbu-
lence data, mean-field reference data will be obtained which will aid with the
aforementioned 2 tasks.

First, section 2 introduces what is meant with averaging and mean-field
data. Then, section 3 lists a number of averaged quantities which would be of
particular interest in developing mean-field models.

The averaging methodology, the quantities of interest and the transport
equations presented in this document are largely based on Ref. [7]. Some of the
text in this document has also been copied from this source.
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2 Definitions and calculation of averages

2.1 Averaging operators

In line with the Reynolds Averaging approach commonly used in hydrodynamic
turbulence modelling, each turbulent quantity u (which varies chaotically in
space and time) is decomposed in an ensemble average component ū and a
fluctuating component u′ according to [13]

u = ū+ u′, (1)

ū ≜ lim
N→∞

1

N

N∑
i=1

u(i). (2)

The latter formula defines the ensemble average where u(i) is an individual
realization of the flow. In this text, we assume the turbulent flows to evolve
towards an ergodic state, meaning that a (long time) statistical steady state of
the flow exists and that the time average of it converges to the ensemble average:

ū ≜ lim
N→∞

1

N

N∑
i=1

u(i) = lim
T→∞

1

T

∫ T

0

udt. (3)

In addition to the Reynolds average, the Favre or density weighted average will
also be used. This is defined as follows [6]:

u = ũ+ u′′, (4)

ũ ≜
nu

n̄
. (5)

This Favre average is particularly useful when transport equations with variable
density need to be averaged, as it allows to limit the number of closure terms
in that case. The Reynolds and Favre decompositions imply the following rela-
tionships:

u′ = 0, nu′′ = 0, (6)

nu = n̄ū+ n′u′ = n̄ũ, nu1u2 = n̄ũ1ũ2 + nu′′
1u

′′
2 . (7)

Note also that the averaging operator ū commutes with time and space deriva-
tives, but the Favre operator ũ does not:

∇u = ∇ū, ∇̃u = ∇ũ+
n∇(u′′)

n̄
= ∇ũ− u′′∇n

n̄
(8)

2.2 Calculating averages from turbulence code data

To approximate/overcome the theoretical infinite time average in equation 3,
an average is instead to be taken over a finite set of Nt time samples ti, i.e.

ū = lim
T→∞

1

T

∫ T

0

udt ≈ 1

N

Nt∑
i=1

u(ti). (9)
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If the turbulence code simulations features a symmetry plane (as the midplane
in slab-cases) or direction λ (e.g. the toroidal direction in toroidal geometry
or the poloidal/diamagnetic direction in slab cases), average quantities ū are
expected to be uniform in this direction. In order to get more data points for
the averaging, which will result in smaller statistical noise on the approximated
ensemble averages, the data will additionally be averaged over this symmetry
direction (or plane), i.e.

ū ≈ 1

NtNλ

Nt∑
i=1

Nλ∑
j=1

u(ti, λj). (10)

Note that this also reduces the size of the average data to be saved, since a
spatial direction is effectively removed (next to the time coordinate). This av-
eraging over the symmetry direction is not a necessary part of the methodology
presented here though, but is recommended.

The averaging in equations 9 or 10 can either be applied by loading all data
points at once, by means of a running average or by running a ’batched’ running
average. The former approach is rather straightforward. It needs all the data
to be available at once, which may require a lot of memory and requires storing
a large data set (all variations in space and time need to be saved).

Alternatively, a running average can be used in which the average over all the
data is gradually built-up by loading the data time step by time step. Moreover,
this running averaging can be calculated during runtime of the turbulence code.
For numerical considerations this running average calculation can also be divided
into batches to obtain batch running averages. These averages may then also be
used to explore the uncertainty on the obtained ensemble-averages (and possibly
even the correlations between the different ensemble averages). It is also possible
to apply both of these algorithms to the stored turbulence code data though.
A schematic of a possible implementation is shown below.

� ū = 0

� For ti = 1 : Nt (Note: assumption that plasma at ti in stat. steady state.)

– run time step to obtain u(ti, λj) / load a new time step u(ti, λj)

– calc average along symm dir: ⟨u(ti)⟩λ = 1
Nλ

∑Nλ

j=1 u(ti, λj)

– calc run avg: ū = ū+ (⟨u(ti)⟩λ − ū)/ti

� end for

Hence, in this case very little data storage and memory is needed to calculate the
average over the entire time horizon. If the running average is calculated during
runtime of the turbulence code, the CPU time of the code will of course increase.
This may reduced by not updating the running average at every time step of
the turbulence code but only after a (fixed) number of time steps. Note that
this isn’t a problem as the fields will be strongly correlated in 2 subsequent time
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steps, thereby providing not much information about the ensemble average of
the statistical steady state. Another possible issue with calculating the running
average during runtime is to determine when to start building up the running
average, i.e. to know from what point on steady state is reached. Determining
this will also cost additional CPU-time. Lastly, it needs to be noted that some
quantities need to be calculated in a in a post processing step, for instance right
after the timestepping-loop, which should be very cheap though.

For instance, Favre averages ũ need to be calculated in such a post processing
step. During the main running averaging step, the (Reynolds) averages n̄ and nu
are calculated. Next, the Favre average itself is calculated in the post processing
step as ũ = nu/n̄. Quantities involving turbulent fluctuations likewise need to be
calculated in such a post processing step. For this, equation 7 or similar relations
can be used. As an example, the turbulent kinetic energy (see definition 11) will

for example be calculated as kE = EE − mṼ
2
E

2 , where EE = mnV2
E/2n̄. Hence

mnV2
E/2, n̄ and nVE are calculated during the running averaging phase and

EE, ṼE and kE in a next post processing step.

2.3 Note about the averaged equations presented

In the remainder of this document, only low β plasmas will be considered.
Hence, it is assumed that strong, constant in time, magnetic fields are externally
applied and that fluctuations of the magnetic field can be neglected. This means
that the magnetic fields can be brought out of the averaging operators. However
we will make one exception to this as we allowed for the influence of A|| on the
parallel momentum equations, which hence will appear in the energy equations.)

2.4 Note about the calculation of the averages: time-
lagging

Note that when correlations between fluctuations are calculated, the fluctua-
tions have to be evaluated at the same time instant. E.g., if the code updates
W,N,Pe,Pi and stores them every Y-timesteps, we won’t be able to exactly
evaluate the averages if PHI is still from the start of the timestep. Hence in
our version of TOKAM2D we first determine the potential at the start of ev-
ery iteration and then store the (plasma) fields which need to be saved in a
dummy-array. When the saving is then requested, we write out the values of
that dummy-array.

5



3 Mean-field quantities of interest

The idea of the mean-field closures for the perpendicular turbulent fluxes pre-
sented in Refs. [5, 2, 1, 3, 4, 8, 10, 9, 11, 12] is that the latter can be modeled by
relating them to quantifiers of the turbulence (such as the turbulent kinetic en-
ergy and the turbulent enstrophy) and to other mean-field quantities. In order
to further verify this ansatz and to elaborate the closure models, more reference
data from more extensive cases is required. Data is required from the turbulent
fluxes to be modeled, of the turbulent quantities intended to explain these fluxes
1, and of the regular mean-field quantities to which the turbulent quantities are
in turn to be related.

The next three sections define a number of quantities which are of particular
interest. Section 3.1 presents a minimum set of quantities of interest (QoIs) to
validate the mean-field closure models. Section 3.2 extends this set of QoIs to
include more information which then will allow for a more elaborate analysis.
Section 3.3 continues to further extend the set, which should allow to further
develop the turbulence closure models for complex cases.

3.1 Minimum set of QoIs

In order to make sense of what is going on in terms of transport in a simulation,
it is needed to have an idea of the simulation setup in terms of magnetic and
vessel geometry and the boundary conditions. Additionally information about
the used grid (i.e. are the grid cells placed symmetrically- or are they field
aligned), the interpretation of the saved fields/fluxes (i.e. do they represent the
field at the cell center, at the faces,... are the fluxes located in the cell center
or at the faces,...) and the discretization/interpolation schemes used to obtain
them. The magnetic geometry is also needed to evaluate the mean-field drifts.

Furthermore, the basic mean-field quantities, which are solved for in mean-
field transport codes, such as SOLPS-ITER are required to get a view on the
conditions in which the turbulence develops and to model the closure terms.
This should include the Reynolds averaged density n̄ and electrostatic potential
ϕ̄, the Favre averaged temperatures T̃i and T̃e (or the Reynolds average pres-
sures, as p̄ = n̄T̃ ), and the Favre averaged parallel velocity Ṽ|| (or the Reynolds

averaged parallel particle flux Γn,|| = nV|| = n̄Ṽ||). In addition, their gradients
in the plane perpendicular to the magnetic field direction (b) are required to
calculate the mean-field ExB and diamagnetic drifts.

Next, the ExB perpendicular fluxes which are assumed to be the dominant
transport effect of the turbulent fluctuations are required. These include the

average turbulent ExB particle flux n′V′
E , ion pressure flux nT ′′

i V
′′
E , electron

pressure flux nT ′′
e V

′′
E and parallel momentum flux nV ′′

|| V
′′
E .

Note that according to equations 7 the total averaged fluxes can be decom-
posed into a component involving the mean-field fluxes based on V̄ or Ṽ and

1Note that ∇n for instance can be classified as belonging to this category, as it is used for
testing the diffusive ansatz
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the common mean-field quantities defined above, and a component due to the
turbulent fluxes2. The easiest way to calculate the turbulent fluxes is to cal-
culate the total flux (e.g. nVE) and the mean-field flux first (e.g. n̄V̄E , V̄E

following from ϕ̄), and to calculate the turbulent flux as the difference of the

two (e.g. n′V′
E = nVE − n̄V̄E). Care needs to be taken regarding consistency

in discretization when computing such differences.
Lastly, the density weighed turbulent kinetic energy kE and enstrophy ζE due

to the turbulent fluctuations in the ExB-velocity are required. These quantities
are defined as

n̄kE ≜
mnV′′2

E

2
and n̄ζE ≜

mnW ′′2
E

2
, (11)

with m the ion mass, and the ExB velocity and pseudo-vorticity defined as

VE =
b×∇ϕ

B
and WE ≜ ∇ · ∇⊥ϕ

B2
. (12)

Again, it is easiest to calculate kE (ζE) as the difference between the total
kinetic energy (enstrophy) and the mean-field kinetic energy (enstrophy), see
section 2.2. In Refs. [5, 2, 1, 3, 4, 8, 10, 9, 11, 12], kE and ζE are used to
model the turbulent transport coefficients for particles (D), pressure (χi/e), and
parallel momentum (χm,||). These transport coefficients were defined through
the following diffusive relations. (Detail: in 3D-turbulence we don’t have always

transport down the exact gradient direction: n′V′
⊥ ×∇⊥n̄ = 0 )

n′V′
⊥ = −D∇⊥n̄, (13)

nT ′′
i/eV

′′
⊥ = −n̄χi/e∇⊥T̃i/e, (14)

mnV ′′
|| V

′′
⊥ = −χm,||n̄∇⊥Ṽ||. (15)

The minimum QoIs introduced in this section are summarised in table 1.
These quantities would already allow to check some basic hypotheses. In par-
ticular, it could be checked if the relation between kE , ζE and the transport
coefficients holds in more general cases.

3.2 Basic set of QoIs

The basic set of QoIs includes:

� more mean-field quantities to better understand the mean-field equilib-
rium and more additional quantities (i.e. k||) which may be related to the
turbulence by using them in the closure expressions.

2Note that Ṽ already accounts for the convection of the mean-fields by the turbulent
particle flux.
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Table 1: Summary of minimum QoIs.

Minimum QoI’s

Description of the geometry and grid (for instance: R,Z,ϕ values of the cell centers for toroidal systems,...)
Description of numerical schemes and equations solved, including boundary conditions
Description of relevant input parameters

basic mean-field quantities n̄, ϕ̄, T̃i, T̃e, Ṽ||
Precise identification of representation reported (plasma) quantities and fluxes. I.e. :

n̄ at cell center
¯nVE,rad at right face
¯nVE,pol at bottom face

gradients of mean-field quantities perpendicular to B (both radial and poloidal/diamagnetic component)
main turbulent fluxes:

n′V′
E via nVE − nVE

nT ′′
i V

′′
E , nT

′′
e V

′′
E , nV

′′
|| V

′′
E via nX ′′V′′

E = nXVE - nṼEX̃

main turbulence identifiers (equation 11): kE =
mnV′′2

E

2n̄ , ζE =
mnW ′′2

E

2n̄

� Additional data on the turbulence to include both the ExB and ion dia-
magnetic turbulent statistics (which will be termed total statistics)3

� currently thought dominant terms in the transport equations for k⊥ and
ζ⊥

� the turbulent/anomalous component of the mean-field parallel fluxes and
additional info on the parallel dynamics

These quantities will allow to

� check if the ExB-only characteristics of the turbulence allow better pre-
dictions of turbulent transport than the total quantities.

� check if turbulent fluctuations are important for parallel transport in the
other conservation equations

� check some terms in the balance of kE and ζE to see how the turblence is
driven and how the drive terms vary in space. If found to be important,
further analysis could then try to model these drive and sink terms.

3For k, ζ the subscripts will indicate which velocities are included: cfr pg 81 & 173 of [7]:

kE∗ =
mn(VE+V∗)′′2

2n̄
, ζE∗ =

mn(WE+W∗)′′2

2n̄
and with WE∗ = WE+W∗ = ∇·(∇⊥ϕ

B2 + ∇⊥pi
eneB2 )

8



Table 2: Summary of additional QoIs for the basic set.
Basic

parallel (convective) turbulent fluxes nT ′′
i V

′′
|| , nT

′′
e V

′′
|| , nV

′′
|| V

′′
||

parallel (conductive) total fluxes qi, qe, Πpp

Polarization current J̄p (eq. 26) and parallel J̄|| current
additional turbulence identifiers: kE∗, ζ,E∗, k||
terms in kE (and kE∗) equation

DW term ∇||ϕ′ · J′
||,

interchange term p′∇ ·V′
E ,

Reynolds stress term −mnV′′
CV

′′
E : ∇Ṽ

T

E ,

+ the stresses themselves ΠRS,E = mnV′′
EV

′′
E

anomalous parallel transport term ∇ · (ϕ′J′
||)

+ flux ϕ′J′
|| separately

terms in ζE (and ζ,E∗) equation

parallel current term W ′′
E∇ · J||,

+ flux W ′′
EJ|| separately

interchange term W ′′
E∇ · J∗,

viscous dissipations W ′′
E∇ · Jp,Π,

Reynolds stress-like term −nW ′′
EV

′′
C · ∇W̃E

+ the stresses themselves nW ′′
EV

′′
C

3.3 Extensive set of QoIs

In order to obtain a very complete mean-field picture of the plasma (fluid) all
terms present in the mean-field equations have to be evaluated, including the
source, sink and transport terms of all energy equations.

For this a ‘full’ evaluation of the mean-field equations has been derived,
which includes: kinetic energy equations for both the perpendicular and parallel
components of the turbulent and mean-field parts (hence 4 equations); enstrophy
equations for the turbulent and mean-field parts and ion and electron thermal
energy equations.

Possibly also magnetic energy, continuity, parallel (ion) momentum and
Ohm’s law to be added? For instance, the parallel momentum would be nice
as we need to check the importance of the reynoldsstresses/anomalous parallel
momentum flux. Similarly while doing a complete mean-field analysis of the
SOL allows to verify that -according then to the 3D codes- that the anomalous
perpendicular fluxes are the most important to be closed first, it is likely ’out of
scope’ to propose closure relations for possible other closure terms popping up
in those equations. However, doing the analysis allows to check for the missing
gaps in RANS modelling, which is part of our final deliverable. (this then also
allows for checking whether the BC’s at the target remain the same,...).

9



Table 3: Summary of extensive QoIs.
Extensive

all terms in the energy transport equations of section A.1
all terms in the enstrophy transport equations of section A.2
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A Transport equations

A.1 Energy equations

In the following kinetic equations (eqn 16 - 19) we take V0 the ion inertial
velocity equal to theVC the ion (particle) convection velocity (not making use of
gyro-viscous cancellations) and setV0 = VC = V||+VE+V∗,i. However, in the
thermal energy equations we use convection with the polarsiation velocity Vp,
hence for eqn 20 - 21 we useVC = V||+VE+V∗,i+Vp andV0 = V||+VE+V∗,i.

Note that the mean-field equations belonging to the plasma model of the
turbulence code will need to be derived on a code by code basis. Hence if in
the turbulence model no convection with Vp is included for the termal energy,
it will also not be present in the mean-field equation for it.

∂n̄EE,m

∂t
+∇ · (n̄EE,mṼC +mnV′′

CV
′′
E · ṼE + Π̄ · ṼE + ϕ̄J̄+ p̄V̄E)

= J̄|| · ∇||ϕ̄+ p̄∇ · V̄E +∇ϕ̄ · J̄p,∗ + Π̄ : ∇Ṽ
T

E +mnV′′
CV

′′
E : ∇Ṽ

T

E

−(
J̄p,E + J̄p,Π

n̄
) · n′∇ϕ′ −mnV||

Db

Dt
· ṼE − EE,mS̄ni

+ S̄m · ṼE . (16)

∂n̄kE
∂t

+∇ · (n̄kEṼC +
mnV′′2

E V′′
C

2
+ Π ·V′′

E + ϕ′J′ + p′V′
E)

= ∇||ϕ′ · J′
|| + p′∇ ·V′

E +∇ϕ′ · J′
p,∗ +Π : ∇V′′T

E

−mnV′′
CV

′′
E : ∇Ṽ

T

E + (
J̄p,E + J̄p,Π

n̄
) · n′∇ϕ′ −mnV||

Db

Dt
·V′′

E

−mSniV
′′2
E

2
−mṼE ·V′′

E · Sni + Sm ·V′′
E . (17)

∂

∂t
(n̄Ek,m,||) +∇ · (mn̄ṼCEk,m,|| +mnV′′

CV
′′
|| · Ṽ|| +Π · Ṽ||)

= Π : ∇Ṽ
T

|| +mnV′′
CV

′′
|| : ∇Ṽ

T

|| − Ṽ|| · ∇||p̄

+mṼ||
Db

Dt
· nV0,⊥ − Ek,m,||S̄ni + Ṽ|| · S̄m. (18)

∂

∂t
(n̄k||) +∇ · (n̄ṼCk|| +

mnV′′
CV

′′2
||

2
+ Π ·V′′

||)

= Π : ∇V′′T
|| −mnV′′

CV
′′
|| : ∇Ṽ

T

|| −V′′
|| · ∇||p

+mV ′′
||
Db

Dt
· nV0,⊥ −

Sni
V′′2

||

2
− Ṽ|| ·V′′

|| · Sni
+V′′

|| · Sm. (19)
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3

2

∂p̄i
∂t

+∇ · (3
2
Γpi,E +

5

2
Γpi,|| +

5

2
Γpi,p +

5

2

b×∇piTi

eB
+ q̄||,i),

= −pi∇ ·VE +V|| · ∇pi +Vp · ∇pi −Π : ∇VT
0 − Q̄ei +

3

2
S̄pi

, (20)

3

2

∂p̄e
∂t

+∇ · (3
2
Γpe,E +

5

2
Γpe,|| +

5

2

b×∇peTe

eB
+ q̄||,e),

= −pe∇ ·VE +V|| · ∇pe −
J||

ne
· ∇pe +

J

en
·Rei + Q̄ei +

3

2
S̄pe

. (21)

Furthermore, we define fluxes and polarisation currents as follows.

Γpi/e,E ≜ nTi/eVE = T̃i/eΓn,E + nT ′′
i/eV

′′
E ≜ Γpi/e,m,E + Γpi/e,t,E , (22)

Γpi,|| ≜ nTiV|| = T̃iΓn,|| + nT ′′
i V

′′
|| (23)

Γpe,|| ≜ nTeV|| −
peJ||

en
= T̃eΓn,|| + nT ′′

e V
′′
|| −

T̃eJ̄||

e
−

T ′′
e J||

e
(24)

Γpi,p ≜ nTiVp = n̄T̃iṼp + nT ′′
i V

′′
p (25)

Jp ≜ −
(
∂nV0

∂t
+∇ · (nVCV0)

)
× mb

B
− ∇ ·Π

B
× b+

Sm × b

B

≜ −
(
∂nV||

∂t
+∇ · nVCV||

)
× mb

B︸ ︷︷ ︸
Jp,||

−
(
∂nVE

∂t
+∇ · nVCVE

)
× mb

B︸ ︷︷ ︸
Jp,E

−
(
∂nV∗,i

∂t
+∇ · nVCV∗,i

)
× mb

B︸ ︷︷ ︸
Jp,∗

−∇ ·Π
B

× b+
Sm × b

B︸ ︷︷ ︸
Jp,Π

(26)

Jp,|| ≜ −
(
∂nV||

∂t
+∇ · nVCV||

)
× mb

B
= −Db

Dt
×

mnV||

B
. (27)

Jp,E ≜ −(
∂nVE

∂t
+∇ · (nVCVE))×

mb

B

= −m

B

∂

∂t
nUE +

m

B
∇ · (nVCUE)−

Db

Dt
× mnVE

B
(28)

Jp,∗ ≜ −(
∂nV∗,i

∂t
+∇ · (nVCV∗,i))×

mb

B

= −m

B

∂

∂t
nU∗,i +

m

B
∇ · (nVCU∗,i)−

Db

Dt
× mnV∗,i

B
(29)
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Figure 1: Schematic representation of the main energy transfer channels between
the different energy forms in plasma edge turbulence. Adapted from Ref. [14].

UE ≜ −b×VE =
∇⊥ϕ

B
, U∗,i ≜ −b×V∗,i =

∇⊥pi
enB

. (30)

A.2 Enstrophy equations

∂n̄ζmean,E

∂t
+∇ · (n̄ζmean,EṼC +mnW ′′

EV
′′
C · W̃E) = W̃E∇ · J̄||

+W̃E∇ · J̄∗ + W̃E∇ · J̄p,Π + W̃E∇ · J̄p,∗ + W̃E∇ · J̄p,||

+nW ′′
EV

′′
C · ∇W̃E + W̃ES̄WE ,cor − ζmean,ES̄ni

, (31)

∂n̄ζturb,E
∂t

+∇ · (n̄ζturb,EṼC +
mnW ′′2

E V′′
C

2
) = W ′′

E∇ · J||

+W ′′
E∇ · J∗ +W ′′

E∇ · Jp,Π +W ′′
E∇ · Jp,∗ +W ′′

E∇ · Jp,||

−nW ′′
EV

′′
C · ∇W̃E +W ′′

ESWE ,cor −
W ′′2

E Sni

2
− W̃EW ′′

ESni
. (32)
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