

Energetic Particle dynamics induced by off-axis neutral beam injection on ASDEX Upgrade, JT-60SA and ITER

Ph. Lauber^I, G. Meng^I, Z. Lu^I, A. Popa^I, T. Hayward-Schneider^I,

Eurofusion ENR NAT⁶ and MET⁷ Teams,

B. Geiger⁴, G. Papp¹, L. Gil⁵, G. D. Conway¹, M. Maraschek¹, G. Por⁸, P. Zs. Poloskei¹, and the

ASDEX Upgrade Team,

A. Bierwage², K. Shinohara²,

M.Schneider³, S.D. Pinches³

¹MPI für Plasmaphysik, IPP, Germany; email: philipp.lauber@ipp.mpg.de

² National Institutes for Quantum and Radiological Science and Technology, Naka Fusion Institute, Ibaraki3 I 1-0193, Japan

³ ITER Organization, Route de Vinon-sur-Verdon, CS90046, 13067 St Paul-lez-Durance, France ⁴ University of Wisconsin, Madison, USA

⁵Instituto de Plasmas e Fusao Nuclear, IST, Universidade de Lisboa, Lisboa, Portugal

⁶ see http://www2.ipp.mpg.de/ pwl/NAT/ENR_NAT.html

⁷ see https://www.afs.enea.it/zonca/METproject/

⁸ Institute of Nuclear Techniques, Budapest University of Technology, Budapest, Hungary

- JT-60SA has exclusive off-axis NNBI capabilities
- recent AUG experiments with exclusive off-axis PNBI allowed us to access regime of previously unexplored EP (energetic particle) physics
- ITER NNBI beams can be moved separately from on-axis to off-axis deposition - but only ~ 100 times in the lifetime of ITER reliable modelling is required to understand & predict consequences of EP-driven instabilities on heating and current profile (pre-fusion, fusion)
 - ★ explore conventional and advanced regimes with off-axis NB current drive in step-ladder approach with the same framework/tools
 ★ use AUG results as unique validation opportunity

in order to drive a sufficient amount of off-axis current, the NBI drive (+ECCD,LH,..) has to be off-axis (JT-60SA, ITER,...)

left: typical ramp-up profiles as traditionally used to study NBI EP transport in DIII-D/ AUG

right: off-axis NBI scenarios relevant when current profile modifications or advanced/ hybrid scenarios are under investigation

two (positive and negative) EP gradients arise - effect of EP driven modes on beam deposition and thus background heating (self organisation)?

WPSA Planning Meeting, 30.3.-2.4. 2020

typical parameter space for important EP quantities (not representative for all scenarios)

	VNBI/VA0	VNBI/V _{th}	Iocal β _{NBI} /β _{th}
ITER (beam)	>1 (pre-fusion)	40 (100 pre-fusion)	<0.5
ITER (α)	>1	~140	0.2-0.3
JT-60U/SA	1.3	<100	<1
DIII-D (NBI)	0.4	<30	<0.5
AUG (NBI)	0.45	<120	<1

I.AUG

AUG experiments emphasise importance of accurate modelling of phase space gradients (∂F/∂E, ∂F/∂Λ) in off-axis NBI

- EGAM drive is determined by integral
- along resonance line ω - ω t=0
- no drive due to mismatch of drive region
 and local GAM frequency
- $_{0}^{10000}$ under investigation for SA: under which conditions do EGAM/BAE resonances and steep ∂ F/ ∂ E NBI regions overlap? for elevated q~2 and moderate Ti it should be possible (working on F_{EP} representation... see below)

resonance analysis shows that:

 BAEs can tap energy from gradient both in velocity space and real space: most unstable mode

 $\gamma \sim \frac{\omega \partial F/\partial E - n \partial F/\partial P_{\Phi}}{\omega - \omega_{t}}$

 BAE redistributes mainly in radial direction and thus triggers the EGAM (increased EP density) and TAE (higher order resonances)

Benchmark of HYMAGIC/MEGA/ORB5 ongoing [IAEA FEC 2020 G.Vlad, X Wang, F. Vannini]

new EP-AUG experiments [May 2019]: EP transport and EGAMs in H and L-mode

EP transport, background ion heating?

TRANSP modelling (with B. Geiger):

- run in semi-interpretative mode: use profiles, in particular ne, Te, q from exp. measurements
- use gyro-bohm model for chi(ions)
- use Nubeam neoclassical model for calculating EP deposition
- compare T_i and n_{EP} with actually measured profiles to detect 'anomalous' effects
- in shaded region between s=[0.4-0.7] model predicts correct gradient
- in core s<0.4 and edge s>0.7 T_i is significantly increased
- at edge, situation is difficult to interpret (losses, change of transport regime etc)
- in core, clear effect on ion heating can be observed

2. JT-60U/SA

• then normalise splined data to total local density

-0.5

7 350000 ╋

taking derivatives in now possible:

successful test on JT-60U case [Bierwage, Nature Comm, 2018, ALE Bierwage&Lauber, 2018]

map to $E-\Lambda$ -space:

 divide in co/cp/trapped particle and normalise separately again

next: compare LIGKA results on MEGA results (data in DMS since last week)

MHD and resonant instabilities in JT-60SA during current ramp-up with offaxis N-NB injection [Bierwage, PPCF 2017,2019]

3. ITER

- overview studies for most relevant scenarios (SA, ITER) started with LIGKA-IMAS (python workflows)
- time-dependent workflows: HELENA (CHEASE) -LIGKA (local/global)
- studies based on METIS runs performed by M. Schneider
- NEMO/SPOT-IMAS data available for this pre-fusion case [M. Schneider]particle IDS has the same structure as MEGA output; straightforward adoption of already developed routine for MEGA

some results:

WPSA Planning Meeting, 30.3.-2.4. 2020

- try IMAS workflows on JT-60SA data (gateway LIGKA libs to be installed)
- test workflows with MEGA/NEMO-SPOT distributions functions in LIGKA
- possible development of MEGA-netcdf interface to IMAS
- compare distribution to ASCOT, compare with ASPACK (IST)
- try other scenarios
- test various high-res equilibrium codes based on low-res transport codes
- strong push to do all this in IMAS

expected physics results:

understand & predict linear mode onset for global AEs/EGAMs understand & predict their mutual non-linear interaction understand & predict non-linear behaviour (chirping/bursting) understand & predict non-linear EP transport & test transport models understand & predict self-organisation