

Planning for future diagnostics enhancements

C. Sozzi

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

JT-60SA timeline

- Key factors for diagnostics developments:
 - Machine capabilities (plasma current, additional power, pulse duration,...) and scientific objectives focused in the various campaigns according with EU strategic priorities
 - Transition C-W (\sim 2029 in the present schedule, but planning revisions ongoing)
 - ITER research plan and needs
 - Overall support for diagnostics enhancements and enhancements in general (funding, know-how availability etc.); but also
 for diagnostics operation and scientific exploitation
- New proposals to be addressed through the Experiment Team (after the end of the IC)
- Time scale for a new diagnostics \sim 3-5 years

More on completed diagnostics studies:

https://users.euro-fusion.org/iterphysicswiki/inde& phap/AmhurasAreports for art Drange UROfusion

Planned diagnostics in JT-60SA

Section	Port	Use	Comments	Section	Section Port				Comments
		CO2 Laser interferometer (tangential)	CCR	P-15	Horizontal	Visible TV cam	neras (+ two light guid	de)	Two sets (co, ctr)
	Horizontal	CO2 Laser polarimeter (tangential)	CCR	P-16	Lower	Bolometer	Bolometer		
P-1		Zeff monitor (visible spectrometer)	Laser injection	P-17	Horizontal	Motional Star	k Effect polarimeter		
	L-Oblique	YAG laser Thomson scattering (edge)	Optics		Upper				
P-2	Horizontal	YAG laser Thomson scattering (core) CXRS (toroidal, BG)	Optics	P-18	Horizontal	Neutron moni Visible TV cam Bolometer	Neutron monitor Visible TV camera (+ light guide) Bolometer		ctr
P-4	L-Oblique	D_{lpha} emission monitor				EDICAM (+ lig	nt guide)		со
P-5	Horizontal	CXRS (toroidal)		P-3,4,9,15	5	Langmuir prot	oes on lower divertor		
	Upper	Visible spectrometer for divertor			Μ	agnetic n	neasureme	ents	
	Horizontal	Neutron monitor		Type		Measurement	Number	Channel	Purpose
P-6		Infrared TV camera (main) CXRS (poloidal, BG)	co, endoscope	Magnetic p Plasma con	probe for ntrol	Poloidal magnetic field	90 (45(pol) x 2(tor)) (1) in FPO	90	Equilibrium reconstruction and plasma control. Low frequency MHD mode
	Lower	Visible TV camera (+ light guide)	co, endoscope	Magnetic j	probe for	Poloidal and radial magnetic	108 (18(pol) x 6(tor))	216 (biovial)	RWM control
	LOWEI			KWW COI		field	70 (20) (1) 0(())	(UIAXIAI)	
P-7	Horizontal	CXRS (poloidal)		Magnetic j MHD	probe for	perturbation	72 (32(pol) X 2(tor) + 8)	72	MHD mode measurement
		CO2 Laser interferometer (tangential) CO2 Laser polarimeter (tangential) YAG laser Thomson scattering	Laser injection Laser injection	Rogowski	loop	Plasma current	3 sets	7	One loop around the vacuum vessel
P-8	Horizontal		Beam dump	Oneturn 10	юр	Poloidal flux	24	24	and plasma control
		Zeff monitor (visible spectrometer) Penning spectroscopy		Diamagne	tic loop	Diamagnetic flux	4 sets	8	Plasma stored energy
P_9	Horizontal	TESPEL		Saddle coi	1	field	36 (18x2)	36	MHD
1 5	Homzontar			Halo curre	nt	21(TBD)	21(TBD)	21(TBD)	
P-10	Horizontal	Neutron monitor VUV Spectrometer Crystal spectrometer		In red: available for IC-FPO					
P-11	Horizontal	Electron cyclotron emission diagnostics		 In black: available for PO-2. PO-3 					
P-12	Upper	VUV spectrometer for divertor		• Port allocation in some extent to be completed (t h c)					
P-14	Upper U-oblique Horizontal	Soft X-ray detector array Soft X-ray detector array Soft X-ray detector array	Modified chord	 Fast Ion Loss Detector (P-15 eq. below midplane) Phase Contrast Imaging (P-1/P-8 eq.) 					

٠

T_e meas in FPO N. Oyama & PID 4.0

C.Sozzi |7th WPSA VC PM | March 2020 |

Doppler Reflectometer (P-18 eq.)

3

Port allocation

To which direction new diagnostic proposals should aim?

Торіс	IO Need	JT-60SA Data]
Plasma Startup	2023	2020	רו
Alignment of B and First Wall	2023 or 2025	2021, 2025	
EC Wall Conditioning	2027	2021, 2023	
Hydrogen H mode	2027	2023	
Vertical Position Control	2027	2023, 2027	
Prototype Magnetics	2023	2021, 2028	
NB Shinethrough	2023 or 2029	2023, 2025	
Third Harmonic EC Heating	2027	2023, 2027	
IMAS use	2023	2021	רו
Protocol for Error Field Correction	2027	2023, 2027	1
Commissioning of Magnets	2023	2021, 2023	ן ו
Cryoplant Commissioning	2020	2020	
Integrated Commissioning	2023	2020	רו
Vacuum Prep/Wall Conditioning	2023	2020	
Simulation Code Validation	2023	2021, 2023] [
SPI or Alternate DMS Tests	2022 or 2027	?	

ITER expression of interest From I/O (T.Luce, R.Pitts)

- Specific areas of interest to ITER for first JT-60SA campaigns
 - First wall alignment, start-up, conditioning
 - Disruption loads and mitigation
 - H-modes, ELM control, plasma magnetic control, NBI shine-through

EU Scientific Priorities

- 1. Development and investigation of high performance scenarios compatible with future W-PFCs.
- 2. Avoidance and mitigation of **disruptions and runaways**,
- 3. Fast ion physics,
- 4. Development and validation of high level **real-time control strategies.**

- ECH (assisted plasma iniziation, Wall conditioning, 3rd Harmonics ECH for H mode)
- Disruptions
- Heat flux measurements on PFCs

Required R&D in existing fusion facilities to support the ITER Research

Plan (see: ITER IDM ITER_D_XAKZLX)

System/ Issue	Required R&D	Category 1=major 2=medium 3=optimization	Required experimental facilities	Comment	Phase when system required/ Most impacted Phase
Radiant Tolerant Detectors	Demonstrate of compact long life detectors for x-ray and VUV	2	x-ray sources combined with neutron and gamma ray sources	Extend the operating capability and availability of these systems	PFPO-2 (2032)
Compact solid state long life radiation tolerant neutronNeutron Detector developmentdetector development for in port and in-vessel e.g. advanced self powered neutron detectors		2	neutron laboratory	Extend the operating capability and availability of these systems	PFPO-2 (2032)
Polarimetric Thomson Scattering	Demonstration of a working Polarimetric Thomson Scattering on a high temperature device.	2	High temperature plasma device >10keV	Extend the dynamic range in temperature of a classic Thomson scattering system	PFPO-2 (2032)
X-ray optics	Develop x-ray reflection systems to allow extended spatial coverage and reduce neutron transmission.	2	X-ray optics laboratory and access to a facility to test the components	Extend the spatial coverage and detector lifetime	PFPO-2 (2032)
Two Wavelength Thomson scattering	Demonstration of a working 2-wavelength Thomson Scattering system on a high temperature device.	2	Experience in Thomson scattering as well as appropriate facilities such as high electron temperature device and suitable experts	Extend the dynamic range in temperature of a classic Thomson scattering system and enable an auto- calibration procedure	PFPO-1 (2028)

Diagnostics for disruption studies

- Assessment performed in 2015(?) by G Pautasso (IPP-Garching), P de Vries (ITER IO), F P Orsitto (ENEA Frascati) https://users.jt60sa.org/?uid=26K4CU

en estice feu dienuntien studie.

	Diagnostics for disruption studies	
category	measurement	comment
Mechanical loads	toroidal vessel current	4 sectors 90° apart
Mechanical loads	halo current (shunts or Rogowski)	4 sectors 90° apart
Mechanical loads	strain-gauges and position sensors	
Magnetics	arrays of poloidal magnetic coils and localized flux measurements for equilibrium reconstruction (1kHz)	4 sectors 90° apart
Magnetics	MHD (100kHz)	
Magnetics	Saddle coils for locked mode	4 sectors 90° apart
Thermal loads	thermography cameras (wall and divertor)	
Radiation	Fast AXUV diode arrays for tomographic reconstruction	
Radiation	Fast CCD camera with selective filters for ionization stages	
Radiation	Foil-bolometer cameras for radiated power fraction	at least 2 sectors
Radiation	fast spectrometer	
runaway electrons	Hard-X ray cameras	
runaway electrons	IR/Visible cameras with counter tangential view for synchrotron radiation	
density	interferometer/polarimeter chords able to measure fast variation of electron density	

7

Gamma measurements

- γ-rays are produced by nuclear reactions
 between fast ions and impurities
- They can be produced in fusion reactions (I step reaction)
 - $d + p \rightarrow {}^{3}He + \gamma (5.5 \text{ MeV})$
- or result from the de-excitation of a nucleus (II step reaction)
 - α + ⁹Be \rightarrow ¹²C^{*} + n,
 - ${}^{12}C^* \rightarrow {}^{12}C + \gamma (4.44 \text{ MeV})$

Diagnostic information of increasing detail:

- Reaction assessment (peak energy identification)
- Temperature of fast ions (spectroscopy),
- Effect of MHD instabilities (count rate)
- Spatial distribution of the fast ions (multiple lines of sight)
- Measurements of the bremsstrahlung radiation spectrum in the MeV range also give information on the RE distribution function

Gamma measurements /2

Possible useful reactions for proton & deuteron studies (500 KeV NBI) have been identified

Sector P4, upper:

- NPA, neutron and γ-ray profile monitors
- An efficient γ-ray spectrometer (MeV gammas) could be installed behind of NPA, as in ITER
- Sector P8, horizontal:
 - NPA
 - An efficient γ-ray spectrometer (MeV gammas) could be installed behind of NPA, as in ITER
- Sector P10, horizontal:
 - neutron and γ-ray profile monitors
- In the neutron profile monitor the γ-ray detectors could be setup (1) with independent collimators (a favourable option); (2) on slider in front of neutron detectors as on JET (a restricted use of the diagnostics)
- Sehind NPA a large volume (high efficiency) γ-ray detectors could be useful
- On JET, we use LaBr₃ and CeBr₃ fast scintillators that provide high energy/time resolution at several MHz count rate
- CeBr₃-detector could be a favourable option for JT60SA

(Existed diagnostics, Table <u>D</u>-6 on pp.148-150, are in blue; proposed – in red)

M. Nocente et al. UNIMIB, M.Tardocchi, E.Perelli-Cippo et al. ISTP-CNR, V. Kiptily CCFE <u>C.So</u>

Developed for the JET Gamma-ray Camera Upgrade project

- Fast (≈ 200 ns FWHM)
- Compact (1"x1")
- Insensitive to
 magnetic fields
- Can be placed in an already existing neutron camera

Compact neutron spectrometers

- Main application of neutron spectrometry at JT-60SA:
 - studies of the deuterium population (eg. D-NBI, thermal/non-th. neutron fraction)
 - Valuable (even though more limited wrt ToF sp.) information on the neutron spectrum can also be gained with relatively inexpensive compact spectrometers, at least as exploratory instruments for the initial phases.

- Development of a matrix of synthetic *diamond* • detectors at JET (VNS project) as well as standalone detectors
 - Main application at JT60-SA: integration in the *neutron* camera
 - Liquid scintillator detectors
 - more limited energy resolution w.r.t. diamonds but
 - higher sensitivity for applications at low neutron yields
- New concept detectors (CLYC-7)
 - Very new technology. Higher sensitivity than liquids and *improved neutron/gamma-ray discrimination*. Good for *low* neutron yields. Soon to be tested at EAST.

Runaway Electron Imaging and Spectrometry System

B.Esposito, F.Causa et al.

- Runaway Electron Imaging and Spectrometry System (REIS) was developed to measure synchrotron radiation spectra from in-flight, confined runaway electrons in tokamaks.
- The REIS is a wide-angle optical system collecting simultaneously visible and infrared emission spectra using an incoherent bundle of fibers, in a spectral range (VIS+NIR) that spans from 500 nm to 2500 nm, and visible images using a CCD color microcamera at a rate of 25 frames/s.

The emission spectra depends on electron energy, pitch angle, and magnetic field intensity. total synchrotron power

$$P = \frac{e^4}{6\pi\epsilon_0 m_e^2 c} p_\perp^2 B^2 \propto p_\perp^2 B^2 \propto p^2 B^3$$

- Extension of the spectrum to 5000 nm is feasible (relevant for JT-60SA) The REIS is a portable system developed for use in medium size tokamaks
- Physics Mission: obtain information on RE energy distribution function

Wide-angle lens coupled to CCD camera (Imaging) and to visible (VIS) and nearinfrared (NIR) spectrometers through an incoherent bundle of fibres (Spectrometry)

 \rightarrow Measurement of synchrotron radiation (RE Forward and Backward views)

11

CCD camera

Diagnostics for ECRF stray detection

A.Moro, C.Sozzi, L.Figini

Residual cross polarized fraction (5%) at 5 keV plasma temperature											
(kW/m ² per 1MW injected beam)	peak incident power density (scen 2) estimated peak on CFC (scen 2) estimated peak peak incident power density (scen 4) estimated peak incident power density (scen 4) on C		estimated peak absorbed power density on CFC (scen 2)		dent power density (scen 2) estimated peak on CFC (scen 2) peak incident power density (scen 4		peak incident power density (scen 4)		estimat absorbed po on CFC	ted peak ower density (scen 4)	duration
poloidal angle	1st bounce	2nd bounce	1st bounce	2nd bounce	1st bounce	2nd bounce	1st bounce	2nd bounce			
0	508.50	18.68	45.26	1.66	1017.00	99.60	90.51	8.86	pulse length		
-20	375.00	10.75	33.38	0.96	70.50	6.06	6.27	0.54			
-35.5	334.50	41.40	29.77	3.68	61.33	13.41	5.46	1.19			
						. /=					

Low absor	ption scenario at	: low pl	asma tem	perature	(50 e\	()

(kW/m ² per 1MW injected beam)	peak incident pov (scen 2	wer density)	estimat absorbed po on CFC	ed peak ower density (scen 2)	y peak incident power density (scen 4)		estimated peak absorbed power density on CFC (scen 4)		duration
poloidal angle	1st bounce	2nd bounce	1st bounce	2nd bounce	1st bounce	2nd bounce	1st bounce	2nd bounce	
0	6780.00	16.60	603.42	1.48	16950.00	1660.00	1508.55	147.74	
-20	3000.00	8.60	267.00	0.77	9000.00	180.60	801.00	16.07	1-1000 ms
-35.5	669.00	0.28	59.54	0.02	3345.00	276.00	297.71	24.56	

- Sensor to monitor ECH stray radiation level in vessel (being developed for ITER)
- 2 bolometers (ECH absorbing/reflecting) connected to a differential thermocouple
- Connected to standard twisted copper pair
- Facing plasma

Time response:100-300ms
accuracy100kW/m²

C.Sozzi |7th WPSA VC PM | March 2020 |

Final remarks

- Diagnostics are an effective way to contribute to the JT-60SA scientific programme. Summary of EU diagnostics proposals
 - 3 feasibility completed and frozen (BES-Li, BES-D, Polarimetry)
 - 1 delivered and installed (EDICAM)
 - 3 live projects (Edge-TS, Divertor VUV, FILD)
 - 2 running feasibility (PCI, DR)
 - 2 idling feasibility (HFS-TS, ECH Stray)
 - More being considered (γ-camera, compact n-spectrometer, REIS)
- Limited room for new diagnostics => need to focus new proposals wrt the research plan and its adaptations,
 - through the ROs (until in charge, ${\sim}2020)$ and
 - through the experiment implementation team (\sim 2021)
- The capabilities of some of the already planned diagnostics are not fully clear and they should go through the process of approval of the respective specifications.
- A sequence of design reviews is being planned for the next months for which the EU expertize will be involved.

JT-60SA Assembly completed in March 2020!

C.Sozzi |7th WPSA VC PM | March 2020 |

Enhancement Projects updates, planning, organisation, discussion

speaker	WG-E1: matter injection and control	status - 2020 objective	
Peter Lang	Pellet	Detailed design-Manufacturing	
Mathias Dibon	MGI	Detailed design-Manufacturing	
Christian Day	Divertor Cryopumps	Detailed design-Manufacturing	
Rudi Neu	W-PFC	Project plan and PFC samples test	
Sam Davis	F4E plans on Enhancements		
all	Discussion		
	WG-E2: diagnostics*		
Roberto Pasqualotto	Thomson Scattering	Optics/Mechanics/Laser procurement	
Marco Valisa	VUV divertor spectroscopy	Spectrometer assembly and test	
Manolo Garcia-Munoz/Juan	Fast lons losses Diagnostics	Design finalization and start of	
Ayllon		manufacturing and test	
Stefano Coda	Phase Contrast Imaging	Design	
Daniel Carralero	Doppler Reflectometry	Feasibility	
C. Sozzi	Possible further activities on diagnostics	Radiation diagnostics preliminary study	
all	Discussion		
Tamas Szepesi	EDICAM – being installed (Operational phase being discussed in WG O3)	Commissioning and plasma operation	

Please mute your microphone and deactivate your camera if not speaking Share your own screen for the presentation Keep active participants window and chat in Zoom. Raise your hand for questions

C.Sozzi |7th WPSA VC PM | March 2020 |