
TSVV - ACH meeting
Feb 2023

Nicola Varini

ACH 2023 goals

● Marconi and Marconi100 will be decommissioned.
● Leonardo will be the replacement.
● Ideally all the codes should be ported to NVIDIA GPUs.
● Computational patterns:

○ Solver: PETSc offers different flavors of GMRES for NVIDIA GPUs.
○ Preconditioner: Through PETSC we can have HYPRE, AMGX, GAMG.
○ RHS: Stencil operations

■ CUDA - requires explicit coding but it is reliable
■ OpenMP/OpenACC offload - strong compiler dependency

○ MPI: if data are copied to/from CPU/GPU will be very slow.
■ Technical point: It’s important to use CUDA-aware MPI and RDMA.

Running on Leonardo Booster

Features a custom BullSequana X2135
“Da Vinci” blade, composed of:

● 1 x CPU Intel Xeon 8358 32 cores,
2,6 GHz

● 512 (8 x 64) GB RAM DDR4 3200
MHz

● 4 x NVidia custom Ampere GPU
64GB HBM2

● 2 x NVidia HDR 2×100 Gb/s cards

● Network: 2xNvidia HDR cards
2x100Gb/s

EuroHPC regular access

● EuroHPC replaced
PRACE

● Either NVIDIA GPU or
AMD based
processors

GRILLIX - recent progress in HPC development

● Scaling
● Poisson solver

GRILLIX - STATUS

● Run wells up to 16 nodes on Intel architectures.
● No working GPU implementation.
● The CMAKE need to be refactored.

○ C++ optional dependency(done by ACH).
○ Hardcoded MKL dependency(problem on Marconi100)

● Solvers: PARALLAX GMRES, PETSc(ACH), DIRECT

GRILLIX - GOALS 2023

● Introduce ENABLE_CXX as CMAKE option - Done
● Benchmarks on AMD based supercomputers.
● Runs on GPU supercomputers(Leonardo):

○ RHS: stencil ported to GPU with CUDA(done in GBS)
○ Solver(PETSc GPU or parallax).

Benchmark on AMD CPU - discoverer

● Discoverer is one of the
supercomputer available through
EuroHPC.

● Dual 64 AMD Epyc
● 1128 nodes

● Good scalability up to 32 cores.
● 2d and 3d solver limit the scalability

Profiling results - ITER on Intel CPU

● Perfect scaling of RHS

● Non-ideal scaling especially for 2D elliptic solver

● Some performance gain even across socket (20
→ 40)

The 2D solver is the main bottleneck

GRILLIX - Comparison of different solvers (ITER neumann)

Algorithm: time per solve [s]

MGMRES (MKL on coarsest) on 20
cores

7.36

DIRECT (MKL) 62.19

DIRECT (CUSPARSE), gpu:v100:2 > 900

PETSc/HYPRE
AMGX

not converging

PETSC (gmres + mg) converges in
miniapp, if matrices
provided on each

level

● For Neumann BC AMG
preconditioner do not converge.

● Direct solver is slow bot on CPU
and GPU.

● It is necessary to provide
restriction, prolongation, elliptic
matrices to make gmres converge.

1010

GRILLIX - Comparison of different solvers (ITER dirichlet)

Algorithm: time per solve [s]

MGMRES (MKL on coarsest) 3.99

DIRECT (MKL) 72.80

PETSC
-ksp_type gmres
-pc_type hypre

57.26

AMGX (Miniapp on Marconi v100 GPU) 1.08

● For Dirichlet BC
AMGX is fast!

Parallax + PETSc for Numann BC - python miniapp
Multigrid preconditioner - requires you provide additional information about the coarser grid
matrices and restriction/interpolation operators.

Necessary to explicitly set the operators
at each level

petscrc

Next steps:
● Implementation in

parallax
● Parameter tuning

Parallax + PETSc for Neumann BC

● Parallax generates the multigrid data.
● The elliptic matrices at each fine grid will be passed

to PETSc.
● We can then use the GPU implementation available

in PETSc for the solvers.
● This will allow runs on Leonardo.

Numerical and algorithmic tools for
Flux-Coordinate Independent approach
(Equilibra, meshes, solvers, operators)

Running PETSc on GPU

● PETSc configuration
○ NVIDIA GPU ./configure --with-cuda --download-hypre –download-amgx

--download-hypre-arguments='--enable-unified-memory'
○ AMD GPU ./configure --with-hip --download-hypre --download-hypre-arguments='--enable-unified-memory'

● Petscrc:
○ -ksp_type gmres
○ -pc_type hypre, amgx
○ -mat_type aijcusparse
○ -vec_type cuda

● Downside: if hypre is compiled on GPU it cannot run on CPU, it has to be recompiled.

● The following steps will allow to run PETSc on GPU

Solvers - GRILLIX

● Neumann BC:
○ the PARALLAX implementation works well on CPU but NO GPU porting available(yet) for

production runs.
○ Next: implement the python miniapp in Fortran/PARALLAX.

● Dirichlet BC:
○ AMGX gives good performance.
○ AMGX is now available through PETSc.

● Goals for 2023:
○ Allow PARALLAX to run on many architectures.
○ Improve the current PETSc implementation of PARALLAX to allow runs with Neumann BC.

GBS - recent progress in HPC development

● Poisson solver
○ AMGX vs PETSC on GPU

● Scaling on Marcon100

GBS - Solver current status
● Let’s consider 16 poloidal planes of TCV@0.9T to fit on 1 GPU

Architecture Solver
Time(s)

MPI Mode Aggressive Coarse % TTS

SkyLake 15.8 36 single y 20

Icy Lake 8.9 72 single y 41

1 V100 21.39 1 many y 60

1 V100 CRASH 1 many n

1 V100 55.97 1 single y 74

1 V100 47.15 1 single n 61

1 A100 57.2 1 single n 68

● Times measured from 10 steps of
GBS simulations.

● CPU -> PETSc/HYPRE
● GPU -> AMGX
● Mode many: 16 planes assembled in

one matrix, rhs and guesses. Solved
together

● Mode single: one solve per poloidal
plane. 16 in total.

● At TCV scale the CPU is faster. Why?
● On V100 many/aggressive_corse gives a 2.5x

performance boost
● On A100 the aggressive_coarse is bugged

(github issue).

Solvers - GBS

● The elliptic solver is the main bottleneck for all the edge codes.
● Assumption: the solution of the different poloidal planes will take

approximately the same number of iterations.
● Miniapp for solver:

○ It loads matrix, rhs and guess and solve the system with the external libraries(AMGX, PETSc).
○ It can be tested on many different architectures.
○ Quick exploration of different parameters.

● Questions:
○ Current status
○ What are the differences between CPU and GPUs?
○ What is the impact of the boundary conditions?

HYPRE BoomerAMG paramters(in Bold the GPU supported
options)

● CycleType = {"", "V", "W"};
● CoarsenType = {"CLJP", "Ruge-Stueben", "", "modifiedRuge-Stueben", "", "",

"Falgout", "", "PMIS", "", "HMIS"};
● Smoother = {"Jacobi", "sequential-Gauss-Seidel",

"seqboundary-Gauss-Seidel", "SOR/Jacobi", "backward-SOR/Jacobi",,
"symmetric-SOR/Jacobi", "l1scaled-SOR/Jacobi", "Gaussian-elimination",
"l1-Gauss-Seidel" , "backward-l1-Gauss-Seidel" , "CG" , "Chebyshev",
"FCF-Jacobi", "l1scaled-Jacobi"};

● Interpolation = {"classical", "direct", "multipass", "multipass-wts", "ext+i",
"ext+i-cc", "standard", "standard-wts", "block", "block-wtd", "FF", "FF1", "ext",
"ad-wts", "ext-mm", "ext+i-mm", "ext+e-mm", “ad-wts”};

● Aggressive coarsening

Poisson solver - GBS - miniapp on GPU with AMGX
● 1 solve - 8 planes
● Let’s test different BC, 3 cases:

○ Bottom, Left = Neu Right,Top = Dir
○ Bottom, Top, Right, Left = Dir

● Presweep, postsweep = 4
● V cycle
● FGMRES

TCV poloidal plane

Top = [Rob, Dir, Neu]

Bottom = [Dir, Neu]

Le
ft

=
[D

ir,
 N

eu
]

R
ig

ht
 =

 [D
ir,

 N
eu

]
GPU type #planes BC type #iterations AMGX solver mode aggressive coarsening time(s)
A100 8 NeuNeuDirDir 90 many no 1.13
A100 1 NeuNeuDirDir 25 single no 0.11
V100 8 NeuNeuDirDir 57 many 2 0.45
V100 1 NeuNeuDirDir 25 single no 0.11
V100 8 NeuNeuDirDir 90 many no 1.59
A100 8 DirDirDirDir 4 many no 0.12
A100 1 DirDirDirDir 4 single no 0.04
V100 8 DirDirDirDir 21 many 2 0.3
V100 1 DirDirDirDir 4 single no 0.04
V100 8 DirDirDirDir 4 many no 0.14

● For complex BC the
number of iterations
increase.

● Aggressive
coarsening is
important

Poisson solver - GBS - miniapp on GPU with PETSc

GPU type #planes BC type #iterations solver mode
aggressive
coarsening time(s)

A100 8 MagMagTarTar 112 many 0 0.97
A100 8 MagMagTarTar 48 many 1 0.29
A100 8 MagMagTarTar 120 many 2 0.7
A100 1 MagMagTarTar 55 single 0 0.16
A100 8 MagMagTarTar 22 single 1 0.07
A100 1 MagMagTarTar 27 single 2 0.1

● Aggressive coarsening doesn’t work for AMGX on A100.
● HYPRE on GPU through PETSc is good.
● Aggressive coarsening is important, especially when we solve many planes at

once.

Poisson solver - GBS - comparison CPU GPU 1 plane -
miniapp drawback

● The solver scales up to 18 cores on
the CPU.

● The performance of the solver on 1
iterations is comparable.

● Somehow PETSc is more efficient
after the first iteration.

GBS - TCV 0.9T

● At 0.9 T the runs on Marconi are faster
compared to Marconi100.

● The strong scaling curves are qualitatively
similar.

● The strong scaling is better on Marconi.

GBS - TCV 1.45T

#nodes(GPU) TTS Poisson stencil
8(32) 832.97 63.39 127.83

16(64) 10.96 5.27 0.48
32(128) 7.08 3.28 0.35

#nodes TTS Poisson stencil

8 62.92 27.31 10.34
16 32.68 14.25 5.33
32 18.14 7.33 2.7
64 12.73 6.46 1.44

128 10.27 3.66 0.74

Marconi 100

Marconi

● On 8 nodes the GPU memory is not sufficient.
● The stencil operations are fast on GPU.
● The solver on GPU is competitive.

Running on Leonardo

● Solver:
○ GBS and Soledge rely on external libraries:

■ Pros: Existing GPU implementation
■ Cons: Not all the parameters are ported to GPU

○ Grillix:
■ AMG preconditioner available in parallax: GPU porting in progress.
■ PETSc implementation in progress.

○ Feltor:
■ In-house solver implementation.

● RHS:
○ Using CUDA will guarantee good performance for the stencil operations.
○ Offload directives are effective as long as the compiler works properly.

