
Progress of
containerized
HPC workflows
with IMAS
Albert Gutiérrez Millà
Barcelona Supercomputing Center (BSC)

21/Oct/2020 Tech Dev meeting, Online

2

Initial consideration

▶ The present work is built upon Tomek Żok's work.

▶ For past TechDev slides on Tomek's work, please visit his July’s 1st

presentation at Indico:

https://indico.euro-fusion.org/event/236/contributions/928/attachments/366/731/im

as-environment-zok.pdf

https://indico.euro-fusion.org/event/236/contributions/928/attachments/366/731/imas-environment-zok.pdf
https://indico.euro-fusion.org/event/236/contributions/928/attachments/366/731/imas-environment-zok.pdf

Outline

• Introduction

• Containerization

• HPC Performance

• Workflow case 1: H&CD

• Demo H&CD

• Workflow case 2: TGLF

• Thoughts & Future work

Introduction

5

The situation

▶ Some codes of IMAS have HPC requirements, but they depend on a

supercomputer that does not have the framework installed.

▶ Supercomputers are complex systems and moving HPC code needs

consideration because scalability and performance could be affected.

▶ IMAS is a heavy framework under constant change and may not be installed

in European supercomputers.

Goal: Implement capabilities for the execution of integrated modelling
fusion workflows including HPC components on Tier-0 and Tier-1
supercomputers.

6

Previous attempts
(and why they did not work)

▶ Built a solution based on UNICORE:

HPC2K.

▶ Agreement to install UNICORE in

coming supercomputers.

▶ But system administrators refused
to install it on new machines.

▶ Moral: do not rely the solution on
external software.

7

Requirements

▶ IMAS framework needs to be moved to the used supercomputers.

▶ The system should be transparent and do no require installation by the
system administrators. It has the be built on the user space.

▶ The system needs to be secure and have a model that does not have a

daemon running on the supercomputer login node.

▶ Minimise the performance degradation of the codes.

Idea: use containers in user space.

Containerization

9

Docker & uDocker

▶ Since its foundation Docker has been a growing

popular tool.

▶ The usage of Docker has been evaluated for HPC.

▶ However, it has showed that it can lead to escalation
of privileges to get root access.

▶ uDocker solves this issue by relying on the containers

on the user space.

10

Singularity

▶ Singularity is a tool developed by LBL at Stanford.

▶ Uses container technology, aimed for HPC.

▶ Aimed for reproducibility and move single images where

the file system is contained.

▶ Singularity software is usually installed by the system
administrators but can be installed in the user space.

▶ List of reported clusters supporting Singularity.

https://docs.google.com/spreadsheets/d/e/2PACX-1vTKiQxi2asXGHbH1wqBavDkz8g6V2iNlvfDd0MBFg_0cC0SvWGdk1xvkT0TOKR6jg2aXvBC6oaevZ-S/pub?gid=143720890&single=true&output=pdf

11

uDocker vs Singularity
▶ Singularity has disadvantages: it is intended for

reproducibility and not for interaction.

▶ This approach can make Singularity less flexible.

▶ uDocker is simpler and accessing the file system of the

image is straightforward.

▶ While they show similar performance due to same

container technologies uDocker is more suitable for
our needs.

▶ Even though we have been using uDocker, it hasn’t had

much activity lately while Singularity is constantly
updated.

HPC Performance
1. Singularity
2. uDocker - Single node
3. uDocker - Multi-node
4. uDocker - ASCOT & BIT1

13

HPCG

▶ HPCG is a benchmark that performs basic operations: sparse matrix-vector

multiplication, vector updates, global dot products, local symmetric

Gauss-Seidel smoother, etc.

▶ One of the two reference benchmark codes to calculate the performance on

top500 supercomputers list.

▶ Performance analysed with Singularity on MareNostrum with Intel drivers.

14

Performance Singularity HPCG
▶ Inter and intranode performance Intel SKL.

▶ Singularity shows to degrade slightly the performance no further than 4%.

15

Performance uDocker MiniFE

▶ MiniFE is a Finite Element application for benchmarking HPC systems.

▶ Computation of: element- operators, assembly, sparse matrix ‐vector product,

vector operations.

▶ The application has requirements similar to applications in fusion and it is

representative of the workload that will be used.

▶ Performance performed with uDocker on Marconi.

16

Performance uDocker MiniFE
▶ Size 256x256x256.

▶ Max difference 3%.
▶ Intranode performance Intel SKL.

▶ Marconi-Fusion with OpenMPI.

17

Performance uDocker MiniFE (2)
▶ Size 512x512x512.

▶ Max difference 3% until 768.
▶ Internode performance Intel SKL.

▶ Marconi with OpenMPI.

18

Performance uDocker MiniFE (2)
▶ Size 512x512x512.

▶ Max difference 3% until 768.

▶ Overhead for small problems.

▶ Internode performance Intel SKL.

▶ Marconi with OpenMPI.

19

Performance uDocker MiniFE (3)
▶ Size 1024x512x512.

▶ Max difference 3% until 768.

▶ Max difference 3% until 768.

▶ Overhead decreases with increasing

size problem.

20

Performance uDocker ASCOT
▶ ASCOT is a Monte Carlo orbit-following code

that solves the kinetic equation.

▶ Max difference 7% until

3072 cores.

21

Performance uDocker BIT1
▶ BIT1 is an electrostatic particle-in-cell (PIC) +

Monte Carlo (MC) code.

▶ Max difference 3.5% until

768 cores.

Workflow case 1
H&CD

23

The H&CD python workflow

▶ Heating and current drive (H&CD)
workflow developed by Mireille.

▶ The H&CD workflow works solely with

python actors and does not use
Kepler.

▶ Using mainly NEMO and SPOT.

24

Software and data dependence

▶ SZIP.

▶ NETCDF & NETCDFF.

▶ NAG.

▶ HDF5.

▶ Intel MPI.

▶ PyAL.

▶ IMAS intel (libimas-ifort.so).

▶ Python actors released for the

H&CD workflow.

▶ Shared files included at ITER cluster

/work/imas/shared/heat/nemo/.

▶ For HPC workflows we will always depend on host’s MPI libraries.

25

H&CD integration in uDocker

▶ The H&CD workflow was the first IMAS workflow to be used and implemented

inside uDocker.

▶ H&CD already work with IDS, uses the IMAS library and involves several

codes including SPOT which runs using MPI.

▶ Current IMAS Docker image relies on GCC.

▶ However, H&CD depends on an Intel IMAS version not compiled inside the

Docker image which needs to be loaded for the execution of the workflow.

26

Loading the environment inside uDocker:
POBAR

▶ A first approach to manage an image able to bind the hosting system inside as

well as the environment in the ITER cluster.

▶ POBAR is a tool that captures the environment, binds directories and loads

environment variables once the session has started.

▶ POBAR was tested at ITER cluster and managed to run the H&CD inside
uDocker.

▶ Proof-of-concept, showed the limitations of the approach regarding reproducibility.

27

28

Singularity and H&CD workflow

▶ To focus on the reproducibility and the containerization of IMAS another

approach was to build a new image with Singularity based on Intel IMAS.

▶ The image was built building IMAS libraries binding the host Intel
compiler to the compilation process.

▶ Even though the IMAS libraries where compiled and that code could be

compiled, there were some issues with the image.

▶ Moreover, Singularity is considered “good friends” with Docker and a built

Docker image can be later moved to Singularity.

29

Building the H&CD image

▶ New approach: reproduce an existing and working setup inside the Docker

image and then move it to a reference supercomputer for testing.

▶ The Gateway structure has been reproduced inside uDocker and some

files were copied inside and configured accordingly.

▶ This was done analysing the dependencies and requirements (ldd,

environment, module, environment, etc).

▶ After setting it up an image with H&CD could be released and working.

▶ The H&CD image has been tested in Marconi and it is currently working
with IMAS 3.28.1.

30

Demo H&CD

Workflow case 2
TGLF

33

▶ TGLF is not a released workflow, instead and ad-hoc minimal Kepler
workflow with an HPC code.

▶ It is intended for the evaluation of the containerized capabilities.

▶ This work is still under development even though it is in an advanced stage.

TGLF

34

Dependencies

▶ Dressed Kepler.

▶ Intel IMAS.

▶ Intel MPI.

▶ NAG.

▶ Lib Interpos.

▶ MKL.

▶ Lib AMNS.

35

Current status

▶ The workflow is correctly loading the libraries and starts the execution in

Marconi.

▶ Able to load actors from Dressed Kepler (of special interest for ETS work).

▶ Running Intel MPI from Kepler actor and opening correctly the

MPI_COMM_WORLD.

▶ However, currently there is a SIGSEGV that needs to be debugged (work in

progress..).

36

Thoughts &
Future work

38

Small size & easy-to-use & general-purpose
▶ We cannot have a small image, easy-to-use and general purpose.

▶ Trying to use a general-purpose image to be binded breaks the essential
philosophy of containers which are closed pieces.

▶ Packing all the possible dependencies, workflows and IMAS versions in one file

would create a huge image.

▶ Our approach: being easy to use is much more important than being
general-purpose.

▶ There are a limited number of HPC IMAS workflows. Idea: work with releases.

○ Work with stable versions of workflows and codes.

○ Release these workflows so they can be moved in an image and used

by the community for their large runs.

39

Future work

▶ Debug and analyse the issue with TGLF TCI execution.

▶ Hands-on session on this work on a general Code Camp.

▶ Expand test to other supercomputers.

▶ Multi-node execution: MPI-Kepler-workflow instead of Kepler-MPI-Workflow.

▶ Next workflow case: ETS?

○ It is the workflow with highest interest and also the highest complexity.

○ Dressed Kepler has already been included in the image which is a

good advance in ETS direction.

○ Dmitriy has already provided instructions and an ETS6 setup.

40

Acknowledgements

Special thanks for their help and contribution to:

▶ Tomek Żok.

▶ Dmitriy Yadykin.

▶ Mireille Schneider.

▶ Michal Owsiak.

▶ Marcin Plociennik.

Thank you

@ fusion@bsc.es

 @Fusion_BSC

 fusion.bsc.es

albert.gutierrez@bsc.es

