

ig Iupercomputación EXCELENCIA SEVERO OCHOA

Progress of containerized HPC workflows with IMAS

Albert Gutiérrez Millà Barcelona Supercomputing Center (BSC)

21/Oct/2020

Tech Dev meeting, Online

Initial consideration

- The present work is built upon **Tomek Żok's work**.
- For past TechDev slides on Tomek's work, please visit his July's 1st presentation at Indico:

https://indico.euro-fusion.org/event/236/contributions/928/attachments/366/731/im as-environment-zok.pdf

 $D + T \rightarrow {}^{4}He (3.5MeV) + n (14.1MeV) \\ {}^{6}Li + n \rightarrow T + {}^{4}He + 4.8MeV$

- Introduction
- Containerization
- HPC Performance
- Workflow case 1: H&CD
- Demo H&CD
- Workflow case 2: TGLF
- Thoughts & Future work

	Tu	bulence	
	10-7		

Introduction

fusion group

The situation

- Some codes of IMAS have **HPC requirements**, but they depend on a **supercomputer** that **does not have the framework installed**.
- Supercomputers are complex systems and moving HPC code needs consideration because scalability and performance could be affected.
- IMAS is a heavy framework under constant change and may not be installed in European supercomputers.

Goal: Implement capabilities for the execution of integrated modelling fusion workflows including HPC components on Tier-0 and Tier-1 supercomputers.

Previous attempts (and why they did not work)

- Built a solution based on UNICORE: HPC2K.
- Agreement to install UNICORE in coming supercomputers.
- But system administrators refused to install it on new machines.
- Moral: do not rely the solution on external software.

Requirements

- IMAS framework needs to be moved to the used supercomputers.
- The system should be transparent and do no require installation by the system administrators. It has the be built on the user space.
- The system needs to be secure and have a model that does not have a daemon running on the supercomputer login node.
- Minimise the performance degradation of the codes.

Idea: use containers in user space.

Containerization

fusion group

Docker & uDocker

- Since its foundation **Docker** has been a growing **popular** tool.
- The usage of Docker has been evaluated for HPC.
- However, it has showed that it can lead to escalation of privileges to get root access.
- **uDocker** solves this issue by relying on the containers on the user space.

UDOCKER

Singularity

- **Singularity** is a tool developed by LBL at Stanford.
- Uses **container technology**, aimed for HPC.
- Aimed for **reproducibility** and move single images where the file system is contained.
- Singularity software **is usually installed by the system administrators** but can be installed in the user space.
- List of reported clusters supporting Singularity.

uDocker vs Singularity

- Singularity has disadvantages: it is intended for reproducibility and not for interaction.
- This approach can make Singularity less flexible.
- uDocker is simpler and accessing the file system of the image is straightforward.

- While they show similar performance due to same container technologies uDocker is more suitable for our needs.
- Even though we have been using uDocker, it hasn't had much activity lately while Singularity is constantly updated.

HPC Performance

- **1. Singularity**
- 2. uDocker Single node
- 3. uDocker Multi-node
- 4. uDocker ASCOT & BIT1

fusion group

HPCG

- HPCG is a benchmark that performs basic operations: sparse matrix-vector multiplication, vector updates, global dot products, local symmetric Gauss-Seidel smoother, etc.
- One of the two reference benchmark codes to calculate the performance on top500 supercomputers list.
- Performance analysed with Singularity on MareNostrum with Intel drivers.

Performance Singularity HPCG

- Inter and intranode performance Intel SKL.
- Singularity shows to degrade slightly the performance no further than 4%.

Cores

Performance uDocker MiniFE

- MiniFE is a Finite Element application for benchmarking HPC systems.
- Computation of: element-operators, assembly, sparse matrix-vector product, vector operations.
- The application has requirements similar to applications in fusion and it is representative of the workload that will be used.
- Performance performed with uDocker on Marconi.

Performance uDocker MiniFE

Intranode performance Intel SKL.

Marconi-Fusion with OpenMPI.

Size 256x256x256.

Max difference 3%.

Cores

Performance uDocker MiniFE (2)

- Internode performance Intel SKL.
- Marconi with OpenMPI.

Size 512x512x512.

Max difference 3% until 768.

Cores

Performance uDocker MiniFE (2)

- Internode performance Intel SKL.
- Marconi with OpenMPI.

Size 512x512x512.

Max difference 3% until 768.

Performance uDocker MiniFE (3)

Performance uDocker ASCOT

ASCOT is a Monte Carlo orbit-following code that solves the kinetic equation.

Host uDocker

Cores

Max difference 7% until

3072 cores.

Performance uDocker BIT1

 BIT1 is an electrostatic particle-in-cell (PIC) +
 Max difference 3.5% until Monte Carlo (MC) code.
 768 cores.

Cores

Workflow case 1 H&CD

fusion group

The H&CD python workflow

- Heating and current drive (H&CD) workflow developed by Mireille.
- The H&CD workflow works solely with python actors and does not use Kepler.
- Using mainly **NEMO** and **SPOT**.

E	CRH
ec_wave_solver	gray 📮
](CRH
ic_coup	•
ic_wave_solver	
ic_wave_fp	-
1	NBI
nbi_source	nemo
nbi_fp	spot 🗸
NU	CLEAR
nuclear_source	•
nuclear_fp	-
SC	ource
fill_core_sources	hcd2core_sources
pr	ofiles
fill_core_profiles	•
Edit Code Parameters	Show Flowchart

Software and data dependence

SZIP.

- NETCDF & NETCDFF.
- NAG.
- HDF5.
- Intel MPI.

PyAL.

- IMAS intel (libimas-ifort.so).
- Python actors released for the H&CD workflow.
- Shared files included at ITER cluster /work/imas/shared/heat/nemo/.

For HPC workflows we will always depend on host's MPI libraries.

H&CD integration in uDocker

- The H&CD workflow was the first IMAS workflow to be used and implemented inside uDocker.
- H&CD already work with IDS, uses the IMAS library and involves several codes including SPOT which runs using MPI.
- Current IMAS Docker image **relies on GCC**.
- However, H&CD depends on an Intel IMAS version not compiled inside the Docker image which needs to be loaded for the execution of the workflow.

Loading the environment inside uDocker: POBAR

- A first approach to manage an image able to bind the hosting system inside as well as the environment in the ITER cluster.
- POBAR is a tool that captures the environment, binds directories and loads environment variables once the session has started.
- POBAR was tested at ITER cluster and managed to run the H&CD inside uDocker.
- Proof-of-concept, showed the limitations of the approach regarding reproducibility.

[gutiera@hpc-login02 pobar]\$./pobar.sh H&CD actors taken from /home/ITER/gutiera/public/imas_actors

```
*
            STARTING 425279da-b031-3e6c-9af9-987cc44dc04c
                                                        *
executing: bash
Selection fulfills all actor selection rules
-- Open input and output file --
---- Enter time loop of the H&CD wrapper ----
Step = 1/18
Time = 5.00 s
dt = 20.00 s
Get core profiles
Get equilibrium
Get ec launchers
Get ic antennas
Get nbi
Get distribution sources
Get waves
Get wall
Get distributions
Execute H&CD workflow for current time slice
-- Step 1: Source codes and Wave solvers
- - NEMO - -
NORMAL MODE
START OF NEMO
# PROCESSORS USED FOR THE CALCULATION = 1

    READ INPUT VARIABLES

--> SOURCES TREATED AS RECTANGULAR
--> USE ADAS CROSS SECTIONS
Wall not detected --> use SOL radius instead
......
Number of ions = 8
```

Singularity and H&CD workflow

- To focus on the reproducibility and the containerization of IMAS another approach was to build a new image with **Singularity** based on **Intel IMAS**.
- The image was built building IMAS libraries binding the host Intel compiler to the compilation process.
- Even though the IMAS libraries where compiled and that code could be compiled, there were some issues with the image.
- Moreover, Singularity is considered "good friends" with Docker and a built Docker image can be later moved to Singularity.

Building the H&CD image

- New approach: **reproduce an existing and working setup** inside the Docker image and then move it to a reference supercomputer for testing.
- The **Gateway structure has been reproduced inside uDocker** and some files were copied inside and configured accordingly.
- This was done analysing the **dependencies** and **requirements** (Idd, environment, module, environment, etc).
- After setting it up an image with H&CD could be released and working.
- The H&CD image has been tested in Marconi and it is currently working with IMAS 3.28.1.


```
imas@r000u06l01:~/hcd_last$ python -c "import sys; sys.path.append('interface'); sys.path.append('workflo
w'); from hcd_wrapper import hcd_wrapper; hcd_wrapper('/home/imas/hcd_last/run_configurations/run_1019_15
0628/')"
Selection fulfills all actor selection rules
-- Open input and output file --
---- Enter time loop of the H&CD wrapper ----
Step = 1/18
Time = 5.00 s
dt = 20.00 s
 Get core profiles
 Get equilibrium
 Get ec launchers
 Get nbi
 Get wall
 Get distribution sources
 Get distributions
 Get waves
Execute H&CD workflow for current time slice
-- Step 1: Source codes and Wave solvers
--NEMO--
NORMAL MODE
START OF NEMO
# PROCESSORS USED FOR THE CALCULATION = 1
- READ INPUT VARIABLES
--> SOURCES TREATED AS RECTANGULAR
--> USE ADAS CROSS SECTIONS
Wall not detected --> use SOL radius instead
                     ----
 Number of ions = 8
Followed ion:
  - Mass number A = 2
  - Charge number Z = 1

    CALCULATE BEAM DEPOSITION

  Number of running PINIS = 32
  Total injected power = 33.000 MW
OTHER NEMO CALLS
```

Demo H&CD

fusion group

Workflow case 2 TGLF

fusion group

TGLF

- TGLF is not a released workflow, instead and ad-hoc minimal Kepler workflow with an HPC code.
- It is intended for the evaluation of the containerized capabilities.
- This work is **still under development** even though it is in an advanced stage.

Dependencies

K Edit parameters for TRANSPORT

	SPITZER =====:				
	Spitzer Resistivity	Please choose if Spitzer resistivity must be included			
Ducced Keylen	Spitzer Resistivity.		Configure		
Dressed Kepler.	calling frequency:	Please choose frequency for calling Spitzer resistivity	Configuro		
	time intervals:	every time step	configure		
	Linie Intervals.	0.0	Configure		
	SpitzerOccurence:	4			
Intel IMAS.	TURBULENCE TRANSPORT:	Please choose turbulence transport model to be used (Off - no turbulence transport will be called)			
	Model:	TGLF	Configure		
		Please choose frequency for calling turbulence transport			
Intol MDI	calling frequency:	every iteration	Configure		
	time intervals:	0.0	Configure		
_	TurbulenceOccurence:	5			
	NEOCLASSICAL TRANSPORT:				
NAG		Please choose neoclassical transport model to be used			
	Model:	NCLASS	Configure		
		Please choose frequency for calling neoclassical transport			
	calling frequency:	every iteration	Configure		
Lib Internee	time intervals:	0.0	Configure		
LID INTERDOS.			-		
	NeoclassicalOccurence:	6			
	DATA BASE TRANSPORT ==:				
	Data Basa Transport	Please choose if transport coefficients saved to input shot/run must be included			
	Data base fransport.	Off	Configure		
	calling frequency:	Please choose frequency for calling data base transport	Carfinusa		
	time intervalor		Configure		
	Line mervais.	0.0	Configure		
LibAMNS	ADDITIONAL TRANSPORT =:				
	Please choose if additional constant transport coefficients must be added				
	Additional fransport.	Off	Configure		
	calling frequency:	every iteration	Configure		
	time intervals:	0.0	Configure		
		N N	Configure		
	AdditionalOccurence:	8			
	N_MPI: 4				
	N_OMP:	1			
		Description Defaulter Destances Destances	and a large		
	Commit Add	Remove Defaults Preferences Help C	ancel		

Current status

- The workflow is correctly loading the libraries and starts the execution in Marconi.
- Able to load actors from **Dressed Kepler** (of special interest for ETS work).
- Running Intel MPI from Kepler actor and opening correctly the MPI_COMM_WORLD.
- However, currently there is a SIGSEGV that needs to be debugged (work in progress..).

[run] KEPLER DIR: /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler [run] 2020-10-19 21:17:09:674 [empty_core_sources] RELOAD: 1 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libempty_core_ sources def.so [run] 2020-10-19 21:17:09:688 [CHANGEOCC] RELOAD: 1 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libCHANGEOCC_def.so [run] 2020-10-19 21:17:09:700 [TRANSPORT_COMBINER] RELOAD: 42 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libTRANSPORT_ COMBINER def.so [run] 2020-10-19 21:17:09:751 [TCIIGNORE] RELOAD: 1 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libTCIIGNORE_def.so [run] 2020-10-19 21:17:09:805 [TCITGLF] RELOAD: 4 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libTCITGLF_def.so [run] 2020-10-19 21:17:09:817 [TCIEDWM] RELOAD: 1 [ms] : /pfs/work/g2agutie/my imas keplers/TGLF2/kepler/imas/lib64/libTCIEDWM def.so [run] 2020-10-19 21:17:09:826 [TCIWEILAND] RELOAD: 1 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libTCIWEILAND_def.so [run] 2020-10-19 21:17:09:835 [TCIGLF23] RELOAD: 2 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libTCIGLF23_def.so [run] 2020-10-19 21:17:09:845 [TCIQLK] RELOAD: 445 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libTCIQLK_def.so [run] 2020-10-19 21:17:10:301 [EMPTY_TRANSPORT] RELOAD: 1 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libEMPTY_TRANSPOR T def.so [run] 2020-10-19 21:17:10:312 [spitzer_resistivity] RELOAD: 7 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libspitzer_re sistivity def.so [run] 2020-10-19 21:17:10:330 [TCIIGNORE_NEOCLASSICAL] RELOAD: 1 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libTCIIGNO RE NEOCLASSICAL def.so [run] 2020-10-19 21:17:10:341 [TCINEO] RELOAD: 3 [ms] : /pfs/work/g2agutie/my imas keplers/TGLF2/kepler/imas/lib64/libTCINEO def.so [run] 2020-10-19 21:17:10:353 [TCINCLASS] RELOAD: 2 [ms] : /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/lib64/libTCINCLASS_def.so [run] 2020-10-19 21:17:10:365 [database transport] RELOAD: 6 [ms] : /pfs/work/g2agutie/my imas keplers/TGLF2/kepler/imas/lib64/libdatabase tr ansport_def.so [run] 2020-10-19 21:17:10:381 [TCIANALYTICAL] RELOAD: 1 [ms] : /pfs/work/g2agutie/my imas keplers/TGLF2/kepler/imas/lib64/libTCIANALYTICAL de f.so [run] cp -r /pfs/work/g2agutie/my_imas_keplers/TGLF2/kepler/imas/src/org/iter/imas/TCITGLF/* .;mpirun -perhost 1 -l -np 4 ./bin/TCITGLF.exe [run] [0] myrank 0 [run] [2] myrank 2 [run] [3] myrank 3 [run] [1] myrank 1 [run] [2] use_bper F [run] [2] use bpar F [run] [2] adiabati_electrons F [run] [2] fastions (jintrac) F [run] [2] dump flag F [run] [3] use_bper F [run] [3] use bpar F [run] [3] adiabati_electrons F [run] [3] fastions (jintrac) F [run] [3] dump flag F [run] [3] alpha p 1.000000000000000 [run] [3] alpha e 1.000000000000000 [run] [3] alpha mach 0.000000000000000E+000 [run] [2] alpha p 1.000000000000000 [run] [2] alpha e 1.000000000000000 [run] [2] alpha mach 0.000000000000000E+000 [run] [2] alpha zf 1.000000000000000 [run] [2] alpha_quench 0.000000000000000E+000 [run] [3] alpha zf 1.000000000000000 [run] [3] alpha quench 0.000000000000000E+000 [run] [3] sat_rule 0 [run] [3] xnu factor 1.000000000000000 epsil [run] [3] 0.0000000000000000E+000 [run] [3] rhomax 0.8000000000000000

Thoughts & Future work

fusion group

Small size & easy-to-use & general-purpose

- We **cannot have** a small image, easy-to-use and general purpose.
- Trying to use a general-purpose image to be binded breaks the essential philosophy of containers which are closed pieces.
- Packing all the possible dependencies, workflows and IMAS versions in one file would create a huge image.
- Our approach: being easy to use is much more important than being general-purpose.
- There are a limited number of HPC IMAS workflows. Idea: **work with releases**.
 - Work with **stable versions** of workflows and codes.
 - **Release these workflows** so they can be moved in an image and used by the community for their **large runs**.

Future work

- Debug and analyse the issue with TGLF TCI execution.
- **Hands-on session** on this work on a general Code Camp.
- Expand test to **other supercomputers**.
- Multi-node execution: **MPI-Kepler-workflow** instead of Kepler-MPI-Workflow.
- Next workflow case: **ETS**?
 - It is the workflow with **highest interest** and also the **highest complexity**.
 - **Dressed Kepler has already been included in the image** which is a good advance in ETS direction.
 - Dmitriy has already provided instructions and an ETS6 setup.

Acknowledgements

Special thanks for their help and contribution to:

- Tomek Żok.
- Dmitriy Yadykin.
- Mireille Schneider.
- Michal Owsiak.
- Marcin Plociennik.

Fusion Group

surcerona Supercomputing Center Center Nacional de Supercomputació EXCELENCIA SEVERO OCHOA

Thank you

albert.gutierrez@bsc.es