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1 Introduction

Since we got the KNOSOS code, we have been doing some profiling and tracing of the application using
inputs provided by the developers. One of the main issues detected was the existence of load imbal-
ance between MPI ranks, which was discussed with one of the developers (José Lúıs Velasco). Such
load imbalance seemed to be the product of the execution of different amounts of iterations in the
CALC_LOW_COLLISIONALITY subroutine between MPI ranks, which could oscillate between 1 and 2800
iterations.

After this discovery, we decided to focus our efforts on analyzing and improving a sequential execution
of the KNOSOS code. Since the MPI implementation of this code relies on launching ”independent”
calculations, improving a sequential version would translate to an overall improvement in the MPI version.
We will briefly detail our advancements in the following sections. Please take into account that this is a
brief report and some details and concrete results will be omitted.

2 Sequential profiling

In order to identify the most consuming parts of the code at this stage, we had to adapt the input files
received (which consisted of 22 ”independent” calculations) to a new input that only contained a single
calculation (concretely, the first one). As soon as we got a working version with a single MPI rank and
input, we tried to get some basic profiling using Valgrind.

After some compatibility issues with Valgrind on MN4 that we couldn’t manage to solve, we decided
to port everything to Nord3. Nord3 had a working Valgrind and an architecture similar to MN4, with
the difference of having 16 cores per node instead of 48. We were able to obtain a callgrind output for a
sequential execution there, which showed the most critical sections of the execution. Using Kcachegrind,
we got a call graph of the most intensive functions of the code.
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Figure 1: First half of the graph of most intensive calls.
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Figure 2: Second half of the graph of most intensive calls.

The percentage shown in the graph nodes determines the amount of time spent inside that function
compared to the total execution time. The values alongside the edges of the graph represent the number
of calls to that node (function). On figure 1 we can see a representation of the top-most functions of the
execution, which indicates that CALC_LOW_COLLISIONALITY takes up almost the totality of the execution
time for this case in particular. We can’t say for sure if this is true for all inputs, it might change if the
amount of times CALC_LOW_COLLISIONALITY is needed decreases. This should be tested with other inputs.

On figure 2 we see the functions that stem from CALC_LOW_COLLISIONALITY. We see that the main
contributors to the execution time are the following subroutines:

• FILL_MATRIX_PETSC (40.55%)

• INTEGRATE_G (27.51%)

• COEFFICIENTS_DKE (24.86%)

By pure application of Amdahl’s Law, we decided to focus on those functions (and their direct
callers/callees). Although we could study how to optimize a strictly sequential version of this code,
we decided to try to parallelize the most intensive parts using OpenMP first.
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3 Parallellization using OpenMP

Our first focus was the relationship between the subroutines COEFFICIENTS_DKE and BOUNCES, since
BOUNCES was inheriting practically all of the execution time of its caller and it takes up about 40% of the
whole execution. We identified that different instances of the BOUNCES subroutine could be performed in
parallel without producing data conflicts between OpenMP threads, so we applied the following naive im-
plementation of OpenMP parallelization in COEFFICIENTS_DKE inside the file low_collisionality.f90:

!$OMP PARALLEL DO FIRSTPRIVATE(Q)
DO i p o i n t =1, npoint

iw =i w ( i p o i n t )
i l a= i l ( i p o i n t )
CALL BOUNCES( iw , z1 ( iw ) , t1 ( iw ) ,B1( iw ) , hBpp1( iw ) , vd1 ( : , iw ) , &

& zb ( iw ) , tb ( iw ) ,Bb( iw ) , hBppb( iw ) , vdb ( : , iw ) , &
& z2 ( iw ) , t2 ( iw ) ,B2( iw ) , hBpp2( iw ) , vd2 ( : , iw ) , &
& 1 ./ lambda ( i l a ) , i p o i n t .EQ. 1 , nq ,Q,&
& zlw ( i p o i n t ) , t lw ( i p o i n t ) , zrw ( i p o i n t ) , trw ( i p o i n t ) )

BI1 ( i p o i n t )=Q(1)
BI2 ( i p o i n t )=Q(2)
BI3 ( i p o i n t )=Q(3)
BI4 ( i p o i n t )=Q(4)
BI5 ( i p o i n t )=Q(5)
BI6 ( i p o i n t )=Q(6)
BI7 ( i p o i n t )=Q(7)
IF (SOLVE QN) BI8 ( ipo in t , 1 : nmodes)=Q( 8 : nq )
IF (DEBUG) WRITE(3100+myrank , ’ (3 I6 , 8 ( 1 pe13 . 5 ) , I5 , 4 ( 1 pe13 . 5 ) ) ’ ) &

& ipo in t , i l a , iw , BI1 ( i p o i n t ) , BI2 ( i p o i n t ) , BI3 ( i p o i n t ) ,&
& BI4 ( i p o i n t ) , BI5 ( i p o i n t ) , BI6 ( i p o i n t ) , BI7 ( i p o i n t ) , BI8 ( ipo in t ,1) ,&
& npoint , zlw ( i p o i n t ) , t lw ( i p o i n t ) , zrw ( i p o i n t ) , trw ( i p o i n t )

ENDDO
!$OMP END PARALLEL DO

For reference, this change was able to reduce the execution time from 15 seconds (sequential) to 10
seconds (using 4 OpenMP threads or more). Seeing that we could achieve some benefits, we went to try
to do the same with the INTEGRATE_G and LAGRANGE subroutines. We also identified a similar situation
where we could run multiple instances of INTEGRATE_G in parallel. Here are the modifications we applied
to INTEGRATE_G in low_collisionality.f90:

!$OMP PARALLEL DO FIRSTPRIVATE ( thetape , D11 ale , dn1 a l e )
DO i a =1,nalphab

D11 zt ( ia , i l )=0
CALL LAGRANGE( thetape ( 1 : tnalpha , i l ) , D11 ale ( 1 : tnalpha ) , tnalpha ,&

& theta ( i a ) , D11 zt ( ia , i l ) , 0 )
IF (QN) THEN! .OR.NTV)THE

dn1 zt ( ia , i l )=0
CALL LAGRANGE( thetape ( 1 : tnalpha , i l ) , dn1 a l e ( 1 : tnalpha ) , tnalpha ,&

& theta ( i a ) , dn1 zt ( ia , i l ) , 0 )
END IF
IF (DEBUG.AND. i p o i n t .EQ. 1 ) WRITE(3800+myrank , ’ (3 (1 pe13 . 5 ) , 2 I6 ) ’ ) &

& zetap ( i l ) , theta ( i a ) , D11 zt ( ia , i l ) , i l , i a
ENDDO
!$OMP END PARALLEL DO

However, this time we didn’t see much improvement using this approach. Since LAGRANGE doesn’t
inherit all the burden of INTEGRATE_G and its contribution to the total execution time is just about 8%,
the OpenMP overhead makes this improvement negligible. For this specific case, we should check how to
directly improve the sequential performance of the code inside INTEGRATE_G.

Right now we are working on it.
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4 MPI load imbalance

For our original input, we detected that the total execution time of an MPI run is largely affected by
load imbalance: some MPI ranks take a lot longer to finish their executions than others. Thanks to some
insight provided by José Lúıs Velasco, we determined that the main culprit for the extreme cases is the
difference in the amount of computed iterations of CALC_LOW_COLLISIONALITY.

Figure 3: Paraver traces of KNOSOS where load imbalance becomes aparent

On 3 we can see an example of that case. In the first trace, we can already see load imbalance. The
second trace shows an extreme case where the unconstrained execution time of a single rank negatively
affects the whole execution. José Lúıs provided some profiling information about the number of iterations
and time spent on CALC_LOW_COLLISIONALITY:

Time in CALC_LOW_COLLISIONALITY Total: 10.982 Average: 0.019 Iterations: 402

Time in CALC_LOW_COLLISIONALITY Total: 10.924 Average: 0.018 Iterations: 418

Time in CALC_LOW_COLLISIONALITY Total: 11.272 Average: 0.019 Iterations: 413

Time in CALC_LOW_COLLISIONALITY Total: 11.366 Average: 0.021 Iterations: 366

Time in CALC_LOW_COLLISIONALITY Total: 11.135 Average: 0.024 Iterations: 309

Time in CALC_LOW_COLLISIONALITY Total: 16.662 Average: 0.051 Iterations: 218

Time in CALC_LOW_COLLISIONALITY Total: 5.979 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 5.562 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 5.839 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 11.062 Average: 0.108 Iterations: 58

Time in CALC_LOW_COLLISIONALITY Total: 5.111 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 7.498 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 6.430 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 7.025 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 5.809 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 79.407 Average: 0.026 Iterations: 2801

Time in CALC_LOW_COLLISIONALITY Total: 7.648 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 9.160 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 7.033 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 8.334 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 10.281 Average: NaN Iterations: 1

Time in CALC_LOW_COLLISIONALITY Total: 10.096 Average: NaN Iterations: 1

Here we can see that, in general, the computations that require a higher amount of CALC_LOW_COLLISIONALITY
iterations need more time than the ones with substantially lower iteration requirements. If that number of
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required iterations scales too much on a single rank compared to its peers, the whole MPI execution needs
to wait for just an outlier. We still haven’t studied what causes those outliers, but our initial recommen-
dation would be to implement a maximum iteration limit to avoid corner cases where one rank executes
too many iterations compared with the rest of MPI ranks. We don’t know if such a limitation would
affect the overall quality of the computation for that rank, we would need some input from the developers.

Even if we managed to eliminate those potential outliers, we would still see variability in the execution
times of each rank. For example, in the profiling information we can also see that some ranks that only
do one iteration still need more time than others that do more than 200. It would be helpful to know
if the expected computation time/complexity could be somewhat predicted based on the inputs used. If
this is possible, a potential option would be to just launch MPI ranks of similar expected computation
times.

5 Points of discussion for a future meeting with the developers

As a final summary of what has been described in this report, we would like to make a list of topics to
discuss in a future meeting. The main points would be the following:

• OpenMP pros and cons. We have already seen some benefits from OpenMP when trying to
reduce the execution time of a single surface. However, those benefits are not for free. Using the
same amount of resources, we should decide what is more desirable: using more threads for each
surface (decreasing the total compute time but also decreasing the number of surfaces being com-
puted) or just sticking with an MPI version where each rank computes a surface using a single
thread (maximizing the number of surfaces being computed, but slower).

• Current MPI approach. We understand that this MPI implementation is based on the idea
of running multiple similar computations in a Monte Carlo approach. It would be interesting to
discuss if this is the approach that you want/need in the future. It would help in order to see what
options are worth exploring or not.

• Load imbalance and viability of potential solutions. Load imbalance is one of the main
issues detected in the current MPI approach. In some cases, it is produced by an abnormally high
amount of executed iterations of some functions on some MPI ranks (as described in section 4).
We have proposed to implement some kind of iteration limit for those cases, but we don’t know if
it would make sense for your specific needs. Another proposed option would be to determine the
expected time or complexity of the computation of each surface before actually starting computing
on it. We would like to know if that would be possible.

• Doubts about code. While reading sections of the code, we have seen that there are some sub-
routines that have variants with the suffix ”NEW”. For example, CALC_LOW_COLLISIONALITY_NANL
and CALC_LOW_COLLISIONALITY_NANL_NEW. The ”NEW” versions don’t show up on our valgrind
traces, so they don’t seem to be used on our executions. Are these subroutines improved versions
of their normal counterparts? Should we use them? If that is the case, how?

This is just a brief list of topics proposed from our side, any other topics are welcome. If you want to
propose other discussion points, please let us know.
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