
KNOSOS

KiNetic Orbit-averaging

SOlver for Stellarators

Division by Zero error
● Pass the -fp_trap flag to PETSc
● This flag is specific to PETSc and not mpiifort or the Debugger (DDT)
● srun ./knosos.x -fp_trap output or use PetscSetFPTrap(PetscFPTrap

flag) inside the program where flag is PETSC_FP_TRAP_ON

https://petsc.org/release/docs/manualpages/Sys/PetscFPTrap/

WHERE does the error occur in the code ?
● Run DDT like: ddt ./knosos.x -fp_trap

● All 22 Processes stop in fill _3dgrid (configuration.f90:1617) with
signal SIGFPE (Arithmetic exception) - floating point division by zero.

Did you want ?
dz = (TWOPI * nzperiod)/nz

The value of dz

● dz = Inf on every process after dz = TWOPI/nz/nzperiod executes

● Correct Solution is: dz = (TWOPI * nzperiod)/nz

● If not corrected, error propagates for e.g., zeta(iz)=(iz-1.)*dz contains NaN

now.

vecb

● Linear system of equations Ax = b …

● Code equivalent [A][vecx] = [vecb]

● But vecb contains a NaN

● vecb has type Vec of PETSc
● Convert it to simple array using VecGetArrayReadF90(vecb,xx_v,ierr)

Where xx_v is PetscScalar, pointer :: xx_v(:)

● Inf or NaN can be checked for a scalar value like:
PetscIsInfOrNanScalar(PetscScalar value)

● Error propagates to vecx etc. when KSPSolve(ksp,vecb,vecx,ierr) is
called.

cmul_1NU, D11 after collisionality, D11 after integrate_g

(Courtesy Helena Vela Beltran, Ricard Zarco Badia)

Before replacing NaN at vecb(3) with random value

After replacing NaN at vecb(3) with random value

22 Processes Original calls

22 Processes corrected calls

Calculate Time Subroutine - Arithmetic Exception

CHECK_JACSIGN in configuration.f90

MPI_COMM_SPLIT for PETSC_COMM_WORLD
(knosos.f90)

You are trying to put every
process in its own communicator
= MPI_COMM_SELF

Suggestion

● Enable fp_trap flag in debug mode (so PETSc can catch floating point
exceptions) or enable it from within the program.

● Add a routine that checks for NaN and Inf, especially the Vectors in PETSc.

Most time consuming subroutines

Attempt Optimization - 1(a), CALCB_DEL in coefficients.f90

22 Processes (Total time) Original (NaN) No NaN (expected
behaviour)

Optimized=Vectorized

CALCB_DEL 138.31 sec 126.51 sec 47.28 sec

Total App Time 1941.66 sec 685.77 551.22

Speed-up for CALCB_DEL = 126.51/47.28 = 2.67x

Total Speed-up = 685.77/551.22 = 1.24x

Notes:
(1) Need to check for correctness
(2) Need to check for unaligned access. ✅

🚨 Time recorded for instance of

CALCB_DEL taking maximum time

Attempt Optimization - 2, DELTA_PHASE in coefficients.f90

This is another loop ! Needs vector
aligned separately !

Add at compile time
-align array64byte -qopt-zmm-usage=high

22 Processes No NaN Aligned + zmm

DELTA_PHASE 35.99 sec 29.03 sec

Speed-up = 1.23x

Attempt Optimization - 1(b), CALCB_DEL in coefficients.f90

22 Processes (Total time) Original (NaN) No NaN (expected
behaviour)

Optimized=Vectorized +
aligned + zmm

CALCB_DEL 138.31 sec 126.51 sec 35.16 sec

Total App Time 1941.66 sec 685.77 514.02

Speed-up for CALCB_DEL = 126.51/35.16 = 3.59x

Total Speed-up = 685.77/514.02 = 1.33x

Notes:
(1) Need to check for correctness
(2) Need to check for unaligned access. ✅

Attempt Optimization - 3, MPI_Allreduce()

Accessing Matrix by rows but Fortran stores
data in column-major order

Accessing Matrix by columns as Fortran
stores data in column-major order
(1) Reduces cache-misses
(2) Useful when problem becomes more

load balanced.

O(mn) cache-misses

O(n) cache-misses

Note:
(1) Demonstrate cache-misses

reduction.
(2) Real benefit AFTER load

balance problem solved.

Questions

1. Are Inf values acceptable ? i.e. Are you intentionally allowing Inf values ?
2. How is a surface being characterized ? (How do you define a surface ? See Q12 also)
3. CAN a surface be divided among multiple MPI processes ? WHAT is divided ?
4. WILL there be a dependency between MPI processes that have sub-parts of a surface ?
5. Will you be moving to a Finite Difference (FDM) scheme ? (Or Have you already moved

to a FDM ?)
6. Is KSP(...) being called multiply for each time step ? If yes then how is vecb being

constructed ? (From the manual: drift-kinetic equation solved N+1 times for each species
but LU factorization done just once for each v)

7. IF using FDM, how will Ax=b be solved ? (Direct solver in PETSc)
8. What is the maximum number of processes that have been used in KNOSOS ?
9. Each process outputs a separate file. With 1000’s of processes will it not be a problem ?

10. Is there any User Documentation ? Yes at: (a)
https://raw.githubusercontent.com/joseluisvelasco/KNOSOS/master/MANUAL

/KNOSOSManual.pdf (b) Paper at: https://arxiv.org/pdf/1908.11615.pdf

https://raw.githubusercontent.com/joseluisvelasco/KNOSOS/master/MANUAL/KNOSOSManual.pdf
https://raw.githubusercontent.com/joseluisvelasco/KNOSOS/master/MANUAL/KNOSOSManual.pdf

10. Is the domain a structured or unstructured one ? (Manual describes building a grid
around α and λ, using centered and non-centered finite difference with second order
accuracy, direct solver based on LU factorization from PETSc used).

11. If the number of species is nbb and the number of surfaces is ns, then is the total
number of surfaces nbb * ns ? i.e. are there ns surfaces per species ? (Allocation of
nb(nbb,ns,nerr) kind of indicates this ?)

12. In the file, input.surfaces what does the array
S=0.01,0.04,0.09,0.16,0.25,0.36,0.49,0.64,0.81,0.95 indicate ? (How does it lead to
the creation of a surface ? Do the coordinates come from boozer.txt ?)

13. rank(is,ierr)=irank what is the use of ierr ? (Number of times calc is repeated ?)

14. What is the relation between boozer.txt and boozmn.nc ?

boozermn.nc - NetCDF file visualized with Panoply

15. Do all processes read the same values from the boozermn.nc file ?

