KNOSOS KiNetic Orbit-averaging SOlver for Stellarators

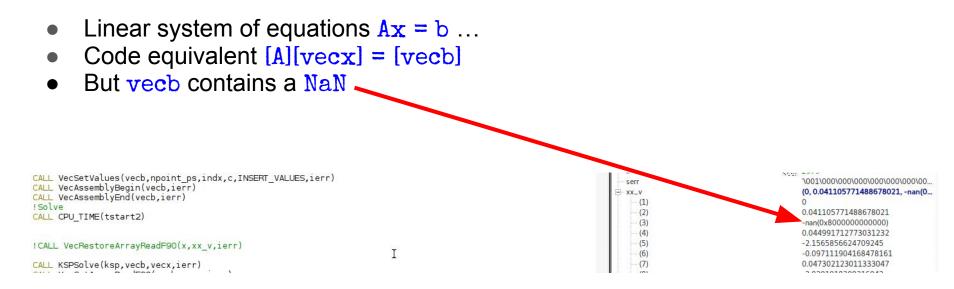
Division by Zero error

- Pass the -fp_trap flag to PETSc
- This flag is specific to PETSc and not mpiifort or the Debugger (DDT)
- srun ./knosos.x -fp_trap output or use PetscSetFPTrap(<u>PetscFPTrap</u> flag) inside the program where flag is PETSC_FP_TRAP_ON

bsc99102@login1:~/KNOSOS/runs/gs/base_env> cat 26901746.err more
[10]PETSC ERROR: *** unknown floating point error occurred ***
[12]PETSC ERROR: *** unknown floating point error occurred ***
[12]PETSC ERROR: The specific exception can be determined by running in a debugger. When the
[12]PETSC ERROR: debugger traps the signal, the exception can be found with fetestexcept(0x3f)
[12]PETSC ERROR: where the result is a bitwise OR of the following flags:
<pre>[12]PETSC ERROR: FE_INVALID=0x1 FE_DIVBYZER0=0x4 FE_0VERFLOW=0x8 FE_UNDERFLOW=0x10 FE_INEXACT=0x20</pre>
<pre>[12]PETSC ERROR: Try option -start_in_debugger</pre>
[12]PETSC ERROR: configure usingwith-debugging=yes, recompile, link, and run
[16]PETSC ERROR: *** unknown floating point error occurred ***
[16]PETSC ERROR: The specific exception can be determined by running in a debugger. When the
[16]PETSC ERROR: debugger traps the signal, the exception can be found with fetestexcept(0x3f)
[16]PETSC ERROR: where the result is a bitwise OR of the following flags:
[16]PETSC ERROR: FE_INVALID=0x1 FE_DIVBYZERO=0x4 FE_OVERFLOW=0x8 FE_UNDERFLOW=0x10 FE_INEXACT=0x20
[16]PETSC ERROR: Try option -start_in_debugger
[16]PETSC ERROR: configure usingwith-debugging=yes, recompile, link, and run
[16]PETSC ERROR: with -start in debugger to get more information on the crash.
[16]PETSC ERROR: Error Message
[16]PETSC ERROR: Floating point exception
[16]PETSC ERROR: trapped floating point error
[16]PETSC ERROR: See https://petsc.org/release/fag/ for trouble shooting.
[16]PETSC ERROR: Petsc Release Version 3.16.1, Nov 01, 2021
[16]PETSC ERROR: /gpfs/home/bsc99/bsc99102/KN0S0S/runs/gs/base_env/./knosos.x on a named s09r1b32 by bsc99102
Wed Jan 4 13:41:04 2023
[16]PETSC ERROR: Configure optionsPETSC_DIR=/qpfs/projects/bsc99/bsc99206/KNOSOS/petsc-3.16.1_tunedprefi
=/gpfs/projects/bsc99/bsc99206/KNOSOS/petsc-3.16.1_tuned/buildwith-petsc-arch=linux-x86_64-optwith-scala
-type=realwith-debugging=0with-64-bit-indices=1with-cc=mpiiccwith-cxx=mpiicpcwith-avx512-kernel
=1with-fc=mpiifort FOPTFLAGS="-q -0" CFLAGS= CXXFLAGS= CXXOPTFLAGS="-q -0" FCFLAGS= COPTFLAGS="-q -0"wit
-blaslapack-lib="/apps/INTEL/2018.4.057/mkl/lib/intel64/libmkl_scalapack_lp64.a -Wl,start-group /apps/INTEL/
018.4.057/mkl/lib/intel64/libmkl_intel_lp64.a /apps/INTEL/2018.4.057/mkl/lib/intel64/libmkl_intel_thread.a /ap
s/INTEL/2018.4.057/mkl/lib/intel64/libmkl core.a /apps/INTEL/2018.4.057/mkl/lib/intel64/libmkl blacs intelmpi
p64.a -Wl,end-group -liomp5 -lpthread -ldl"

WHERE does the error occur in the code ?

- Run DDT like: ddt •/knosos•x -fp_trap
- All 22 Processes stop in fill_3dgrid (configuration.f90:1617) with signal SIGFPE (Arithmetic exception) floating point division by zero.

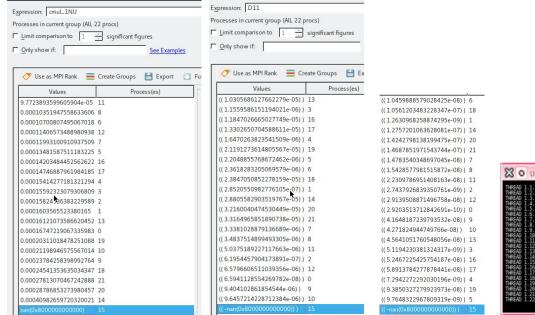


The value of dz

- dz = Inf on every process after dz = TWOPI/nz/nzperiod executes
- Correct Solution is: dz = (TWOPI * nzperiod)/nz
- If not corrected, error propagates for e.g., zeta(iz)=(iz-l.)*dz contains NaN

now.

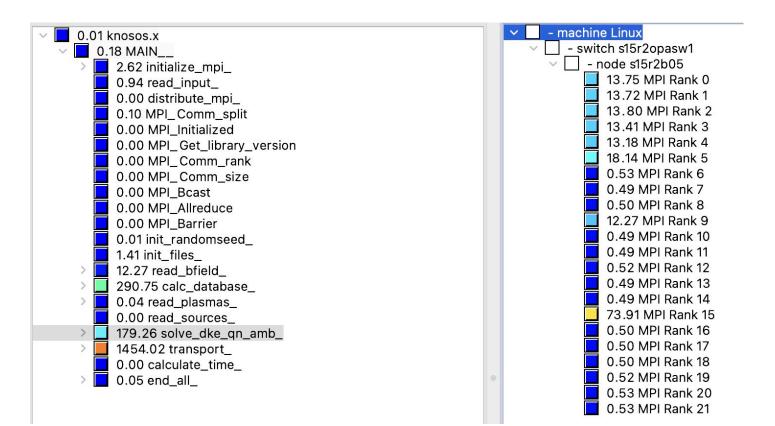
vecb



- **vecb** has type **Vec** of PETSc
- Convert it to simple array using VecGetArrayReadF90(vecb,xx_v,ierr) Where xx_v is PetscScalar, pointer :: xx_v(:)

- Inf or NaN can be checked for a scalar value like: PetscIsInfOrNanScalar(PetscScalar value)
- Error propagates to vecx etc. when KSPSolve(ksp,vecb,vecx,ierr) is called.

g=0 IF(.NOT.CALC_DG) THEN I	serr ⊕- indx	'10001v13761377137711771000100010
CALL VecGetValues(vecx,npoint_ps,indx,g,ierr) D0 ii=1,npoint_ps IF(PetscIsInfOrNanScalar(g(ii))) THEN g(ii)=0.d0	⊕ g2 ⊖ g (1) (2)	(0, 0, 0, 0, -nan(0x80000000000), . 0
END IF END DO	···· (3) ···· (4)	0
<pre>ELSE IF(FLUX_NU) THEN CALL MatMult(matA,vecx,vecb2,ierr) CALL VecGetValues(vecb2,npoint_ps,indx,g,ierr) ELSE IF(CALC_RHS.OR.CALC_OLFF.OR.CALC_COL) THEN CALL MatMult(matA,vecx,vecb2,ierr) CALL VecGetValues(vecb2,npoint_ps,indx,g2,ierr) IF(CALC_DA) THEN CALL VecGetValues(vecx,npoint_ps,indx,g,ierr) g=g2/g ELSE g=g2 END IF END IF</pre>	$ \begin{array}{c} - (5) \\ - (6) \\ - (7) \\ - (8) \\ - (9) \\ - (10) \\ - (11) \\ - (12) \\ - (13) \\ - (14) \\ - (15) \\ - (16) \\ - (17) \\ \end{array} $	-nan(0x80000000000) -nan(0x80000000000) -nan(0x80000000000) -nan(0x800000000000) -nan(0x800000000000) -nan(0x80000000000) -nan(0x80000000000) -nan(0x80000000000) -nan(0x80000000000) -nan(0x80000000000) -nan(0x80000000000) -nan(0x80000000000) -nan(0x80000000000) -nan(0x80000000000) -nan(0x80000000000)


cmul_lNU, Dll after collisionality, Dll after integrate_g

(Courtesy Helena Vela Beltran, Ricard Zarco Badia)

Before replacing NaN at vecb(3) with random value

After replacing NaN at vecb(3) with random value

- node s23r2b09

13.65 MPI Rank 0

13.60 MPI Rank 1

13.67 MPI Rank 2

13.28 MPI Rank 3

12.97 MPI Rank 4

17.71 MPI Rank 5

0.52 MPI Rank 6

0.50 MPI Rank 7

0.51 MPI Rank 8

11.80 MPI Rank 9

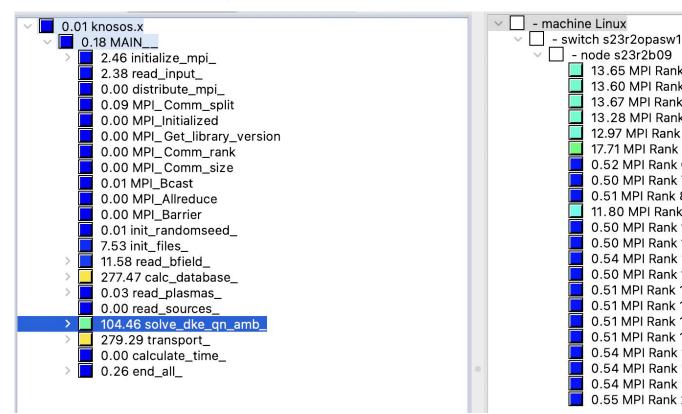
0.50 MPI Rank 10

0.50 MPI Rank 11

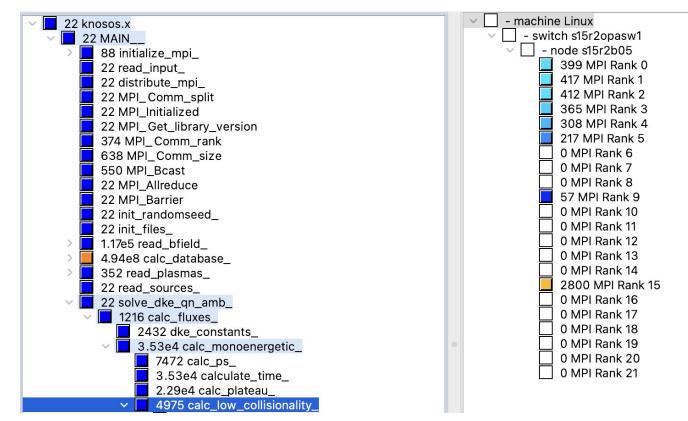
0.54 MPI Rank 12

0.50 MPI Rank 13

0.51 MPI Rank 14

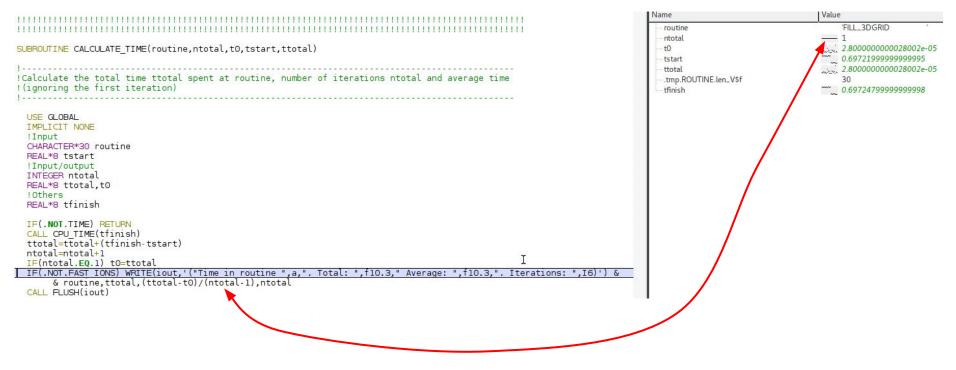

0.51 MPI Rank 15

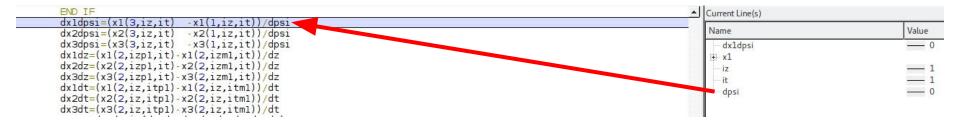
0.51 MPI Rank 16


0.51 MPI Rank 17

0.54 MPI Rank 18

0.54 MPI Rank 19 0.54 MPI Rank 20 0.55 MPI Rank 21


22 Processes Original calls

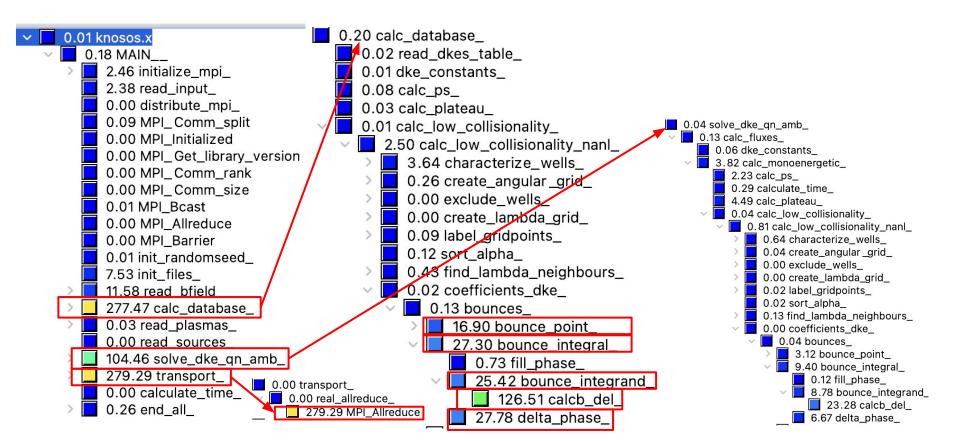

22 Processes corrected calls

Calculate Time Subroutine - Arithmetic Exception

CHECK_JACSIGN in configuration.f90

MPI_COMM_SPLIT for PETSC_COMM_WORLD (knosos.f90)

#ifdef MPIandPETSC CALL MPI COMM SPLIT(MPI COMM WORLD, myrank, myrank, PETSC COMM WORLD, ierr) CALL PETSCINITIALIZE(PETSC_NULL_CHARACTER, ierr) #endif #endif To put every process in its own communicator = MPI COMM SELF


By default PETSC_COMM_WORLD and MPI_COMM_WORLD are identical unless you wish to run PETSc on ONLY a subset of MPI_COMM_WORLD. In that case create your new (smaller) communicator, call it, say comm, and set PETSC_COMM_WORLD = comm BEFORE calling PetscInitialize(), but after MPI_Init() has been called.

The value of PETSC_COMM_WORLD should never be USED/accessed before PetscInitialize() is called because it may not have a valid value yet.

Suggestion

- Enable fp_trap flag in debug mode (so PETSc can catch floating point exceptions) or enable it from within the program.
- Add a routine that checks for NaN and Inf, especially the Vectors in PETSc.

Most time consuming subroutines

Attempt Optimization - 1(a), CALCB_DEL in coefficients.f90

DO	nm=1,Nnm		
	n=np(nm)		
	m=mp(nm)		
	IF(STELL_ANTISYMMETRIC) THEN		
	<pre>IF(flag.EQ.0.OR.flag.EQ.2) THEN ! B 0=B 0+bnmc0(nm)*cosnm(nm)+bnms0(nm)*sinnm(nm) <</pre>	original	
	GS_TEMP_1=GS_TEMP_1+bnmcO(nm)*cosnm(nm)+bnmsO(nm)*sinnm		
	IF(flagB1) B_1=B_1+bnmc1(nm)*cosnm(nm)+bnms1(nm)*sinnm		
	IF(flagB1) GS_TEMP_4=GS_TEMP_4+bnmc1(nm)*cosnm(nm)+bnms		
	<pre>!IF(TANG_VM.AND.flag.GT.1) dBdpsi=dBdpsi+dbnmcdpsi(nm)*</pre>		
	IF(TANG_VM.AND.flag.GT.1) GS_TEMP_6=GS_TEMP_6+dbnmcdpsi	.(nm)*cosnm(nm)+dbnmsdps1(nm)*s1nnm(nm)	
	END IF		
	IF(flag.NE.O) THEN		
	<pre>qnmsinnm=bnmc0(nm)*sinnm(nm)</pre>		
	<pre>!dBdz_0=dBdz_0-qnmsinnm*n*nzperiod <original< pre=""></original<></pre>		
	GS_TEMP_8=GS_TEMP_8-qnmsinnm*n*nzperiod		-
	<pre>!dBdt_0=dBdt_0-qnmsinnm*m < original</pre>	22 Processes (Total time)	0
	GS_TEMP_10=GS_TEMP_10-qnmsinnm*m		-
	qnmcosnm=bnms0(nm)*cosnm(nm)		
	!dBdz_0=dBdz_0+qnmcosnm*n*nzperiod < original		
	GS_TEMP_8=GS_TEMP_8+qnmcosnm*n*nzperiod		
	!dBdt_0=dBdt_0+qnmcosnm*m <original< td=""><td></td><td></td></original<>		
	GS_TEMP_10=GS_TEMP_10+qnmcosnm*m	CALCB DEL	1
	IF(flagB1) THEN		
	<pre>qnmsinnm=bnmc1(nm)*sinnm(nm)</pre>		
	<pre>!dBdz_1=dBdz_1-qnmsinnm*n*nzperiod < original</pre>		
	GS_TEMP_12=GS_TEMP_12-qnmsinnm*n*nzperiod		
	<pre>IdBdt_1=dBdt_1-qnmsinnm*m <original< pre=""></original<></pre>	Total Ann Tima	1
	GS_TEMP_14=GS_TEMP_14-qnmsinnm*m	Total App Time	
	qnmcosnm=bnmc1(nm)*cosnm(nm)		
	<pre>!dBdz_1=dBdz_1+qnmcosnm*n*nzperiod <original< pre=""></original<></pre>		
	GS_TEMP_12=GS_TEMP_12+gnmcosnm*n*nzperiod		
	IdBdt_1=dBdt_1+qnmcosnm*m <original< td=""><td></td><td></td></original<>		
	GS_TEMP_14=GS_TEMP_14+qnmcosnm*m		
	END IF	0	
1	END IF	506	eed-u
-	END IF	-	
		Tot	al Sp
	ELSE	IOla	ai Sp
			•
	IF(flag.EQ.0.OR.flag.EQ.2) THEN	Not	es:
	<pre>! B_0=B_0+bnmc0(nm)*cosnm(nm) < original</pre>	INUL	E S.
	GS_TEMP_2=GS_TEMP_2+bnmc0(nm)*cosnm(nm)		
	<pre>!IF(flagB1) B_1=B_1+bnmc1(nm)*cosnm(nm) <original< pre=""></original<></pre>	(1)	Ne
	IF(flagB1) GS_TEMP_5=GS_TEMP_5+bnmc1(nm)*cosnm(nm)	(1)	110
	<pre>!IF(TANG_VM.AND.flag.GT.1) dBdpsi=dBdpsi+dbnmcdpsi(nm)*</pre>	cosnm(nm) <original< th=""><th></th></original<>	
	IF(TANG_VM.AND.flag.GT.1) GS_TEMP_7=GS_TEMP_7+dbnmcdpsi		
	END TE		

Time recorded for *instance* of *CALCB_DEL* taking maximum time

22 Processes (Total time)	Original (NaN)	No NaN (expected behaviour)	Optimized=Vectorized
CALCB_DEL	138.31 sec	126.51 sec	47.28 sec
Total App Time	1941.66 sec	685.77	551.22

Speed-up for CALCB_DEL = 126.51/47.28 = 2.67x Total Speed-up = 685.77/551.22 = 1.24x Notes:

- (1) Need to check for **correctness**
- 2) Need to check for unaligned access. 🗸

Attempt Optimization - 2, DELTA_PHASE in coefficients.f90

.00P BEGIN at /gpfs/home/bsc99/bsc99102/KNOSOS/knosos/mn4/Sources/coefficients.f90(354.3) remark #15388: vectorization support: reference cosnm temp(:) has aligned access remark #15389: vectorization support: reference cosnm(:) has unaligned access remark #15389: vectorization support: reference cosnm_del(:) has unaligned access remark #15389: vectorization support: reference sinnm(:) has unaligned access [/gpfs remark #15389: vectorization support: reference sinnm del(:) has unaligned access remark #15389: vectorization support: reference sinnm(:) has unaligned access [/gpfs remark #15389: vectorization support: reference cosnm(:) has unaligned access [/gpfs remark #15389: vectorization support: reference sinnm_del(:) has unaligned access remark #15389: vectorization support: reference sinnm(:) has unaligned access [/gpfs remark #15389: vectorization support: reference cosnm del(:) has unaligned access remark #15381: vectorization support: unaligned access used inside loop body remark #15305: vectorization support: vector length 4 remark #15399: vectorization support: unroll factor set to 4 remark #15309: vectorization support: normalized vectorization overhead 0.156 remark #15301: FUSED LOOP WAS VECTORIZED remark #15321: Compiler has chosen to target XMM/YMM vector. Try using -gopt-zmm-usage remark #15449: unmasked aligned unit stride stores: 1 remark #15450: unmasked unaligned unit stride loads: 4 remark #15451: unmasked unaligned unit stride stores: 1 remark #15475: --- begin vector cost summary --remark #15476: scalar cost: 23 remark #15477: vector cost: 6.000 remark #15478: estimated potential speedup: 3.410 remark #15488: --- end vector cost summary ---OOP END

22 Processes	No NaN	Aligned + zmm
DELTA_PHASE	35.99 sec	29.03 sec

Speed-up = 1.23x

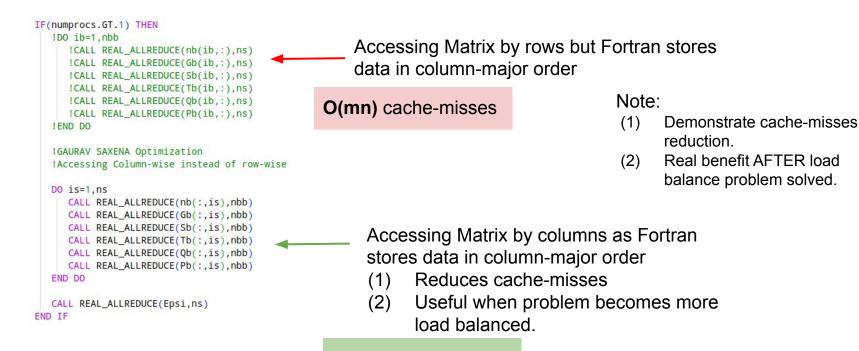
This is another loop ! Needs vector aligned separately !

LOOP BEGIN at /gpfs/home/bsc99/bsc99102/KNOSOS/knosos/mn4/Sources/coefficients.f90(355,3)			
remark #15388: vectorization support: reference cosnm_temp(:) has aligned access			
remark #15388: vectorization support: reference cosnm(:) has aligned access			
remark #15388: vectorization support: reference cosnm_del(:) has aligned access			
remark #15388: vectorization support: reference sinnm(:) has aligned access [/gpfs/h			
remark #15388: vectorization support: reference sinnm_del(:) has aligned access [/gp			
remark #15305: vectorization support: vector length 4			
remark #15399: vectorization support: unroll factor set to 4			
remark #15300: LOOP WAS VECTORIZED			
remark #15321: Compiler has chosen to target XMM/YMM vector. Try using -qopt-zmm-usage=			
remark #15448: unmasked aligned unit stride loads: 4			
remark #15449: unmasked aligned unit stride stores: 1			
remark #15475: begin vector cost summary			
remark #15476: scalar cost: 12			
remark #15477: vector cost: 2.250			
remark #15478: estimated potential speedup: 4.540			
remark #15488: end vector cost summary			
LOOP END			
!dir\$ vector aligned			
<pre>cosnm_temp=cosnm*cosnm_del-sinnm*sinnm_del</pre>			
sinnm=cosnm*sinnm del+sinnm*cosnm del			
cosnm=cosnm_temp			
costini-costini-comp			
Add at compile time			
Add at compile time			

-align array64byte -qopt-zmm-usage=high

Attempt Optimization - 1(b), CALCB_DEL in coefficients.f90

DO nm=1,Nnm n=np(nm)	
<pre>imap(im) TF(STELL_ANTISYMMETRIC) THEN IF(flag.EQ.0.0R.flag.EQ.2) THEN I = 0-0B_0-thmoc()(mm)*cosm(mm)*bins0(mm)*sinnm(mm) S_TEW_1=65_TEW_1+bmc((mm)*cosm(mm)*bins0(mm)*sinnm(mm) IF(flagB1) 65_TEW_2+66_TEW_2+bmc1(nm)*cosm(nm)*binsn(mm)*cosm(nm)*dbmsdps1(mm)*sinnm(nm) IF(flagB1) 65_TEW_2+66_TEW_2+bmc1(nm)*cosm(nm)*bins1(mm)*cosm(nm)*dbmsdps1(mm)*sinnm(nm) <free <="" <free="" d6dps1="d6dps1+dbmcdps1(mm)*cosm(nm)*dbmsdps1(mm)*sinnm(nm)" if(takg_wa.and.flag.gt.1)="" original="" pre=""> (IF(flag.NE.0) THEN IF(flag.NE.0) THEN If(flag.NE.0) THEN If(flag.GT.DP_0-GS_TEW_0-reginal GS_TEW_0+d6db2_0-qmsinnm*m*r2period Id6d_C_0-dd6db2_0-qmsinnm*m*r2period Id6d_C_0-dd6db2_0-qmsinnm*m*r2period GS_TEW_10-65_TEW_10-qmsinnm*m*n2period Id6dc1dd6db2_1-qmsinnm*m*n2period Id6dc1dd6db2_1-qmmcosnm*m*r2period Id6dc1dd6db1_1-qmmcosnm*m*r2period Id6dc1dd6db1_1-qmmcosnm*m*r2period Id6dc1dd6db1_1-qmmcosnm*m*r2period Id6dc1dd6db1_1-qmmcosnm*m*r2period Id6dc1dd6db1_1+qmmcosnm*m*r2period Id6dc1dd6db1_1+qmmcosnm*m*r2period Id6dc1dd6db1_1+qmmcosnm*m*r2period Id6dc1dd6db1_1+qmmcosnm*m*r2period Id6dc1_+d6db1_1+qmmcosnm*m*r2period Id6dc1_+d6db1_1+qmmcosnm*m*r2period Id6dc1_+d6db1_1+qmmcosnm*m*r2period Id6dc1_+d6db1_1+gmmcosnm*m*r2period Id6dc1_+d6db1_1+gmmcosnm*m*r2per</free></pre>	
<pre>! B_O=B_O+DnmcO(rm)*cosnm(nm)+bnmsO(rm)*sinnm(rm) < GS_TEMP_1=GS_TEMP_1+bnmcO(rm)*cosnm(rm)+bnmsO(rm)*sinr !IF(flagB1) B_1=B_1+bnmc1(rm)*cosnm(rm)+bnms1(rm)*sinr IF(flagB1) GS_TEMP_4=GS_TEMP_4+bnmc1(rm)*cosnm(rm)+bnn !IF(TANG_VM.AND.flag.GT.1) dBdpsi=dBdpsi+dbnmcdpsi(rm) IF(TANG_VM.AND.flag.GT.1) GS_TEMP_6=GS_TEMP_6+dbnmcdps END IF IF(flag.NE.0) THEN [qnmsinnm=brmcO(rm)*sinnm(rm)</pre>	nm(nm) nm(nm)original ns1(nm)*sinnm(nm) *cosnm(nm)+dbnmsdpsi(nm)*sinnm(nm) <original< th=""></original<>
GS_TEMP_8=GS_TEMP_8-qnmsinnm*n*nzperiod IdBdt_0-dBdt_0-qnmsinnm*m < original GS_TEMP_10+GS_TEMP_10-qnmsinnm*m qnmcosnm=bnms0(nm)*cosnm(nm) IdBddz_0-dBdz_0-qnmcosnm*n*nzperiod < original GS_TEMP_8=GS_TEMP_8+qnmcosnm*n*nzperiod IdBdt_0-dBddt_0+qnmcosnm*m <original GS_TEMP_10=GS_TEMP_10+qnmcosnm*m IF(flagB1) THEN qnmsinnm=bnmc1(nm)*sinnm(nm)</original 	22 Processes (Total tin
	CALCB_DEL
<pre>GS_TEMP_12=GS_TEMP_12-qnmsinnm*n*nzperiod Idddt_1=ddbt_1-qnmsinnm*m <original gs_temp_14="GS_TEMP_14-qnmsinnm*m" qnmcosnm="bnmc1(nm)*cosnm(nm)</pre"></original></pre>	Total App Time
GS_TEMP_12=GS_TEMP_12+qnmcosnm*n*nzperiod IdBdt_1=dBdt_1+qnmcosnm*m <original GS_TEMP_14=GS_TEMP_14+qnmcosnm*m END IF</original 	
<pre>ELSE IF(flag.EQ.0.0R.flag.EQ.2) THEN I B_0=B_0+bnmc0(nm)*cosnm(nm) < original GS_TEMP_2=GS_TEMP_2+bnmc0(nm)*cosnm(nm) IIF(flagB1) B_1=B_1+bnmc1(nm)*cosnm(nm) <original gs_temp_5="GS_TEMP_5+bnmc1(nm)*cosnm(nm)</pre" if(flagb1)=""></original></pre>	


DO HON & March

22 Processes (Total time)	Original (NaN)	No NaN (expected behaviour)	Optimized=Vectorized + aligned + zmm
CALCB_DEL	138.31 sec	126.51 sec	35.16 sec
Total App Time	1941.66 sec	685.77	514.02

Speed-up for CALCB_DEL = 126.51/35.16 = 3.59x Total Speed-up = 685.77/514.02 = 1.33x Notes:

- (1) Need to check for **correctness**
- (2) Need to check for unaligned access.

Attempt Optimization - 3, MPI_Allreduce()

O(n) cache-misses

Questions

- 1. Are **Inf** values acceptable ? i.e. Are you intentionally allowing **Inf** values ?
- 2. How is a surface being characterized ? (How do you define a surface ? See Q12 also)
- 3. CAN a surface be divided among multiple MPI processes ? WHAT is divided ?
- 4. WILL there be a dependency between MPI processes that have sub-parts of a surface ?
- 5. Will you be moving to a Finite Difference (FDM) scheme ? (Or Have you already moved to a FDM ?)
- Is KSP(...) being called multiply for each time step ? If yes then how is vecb being constructed ? (From the manual: drift-kinetic equation solved N+1 times for each species but LU factorization done just once for each v)
- 7. IF using FDM, how will **Ax=b** be solved ? (Direct solver in PETSc)
- 8. What is the maximum number of processes that have been used in KNOSOS?
- 9. Each process outputs a separate file. With 1000's of processes will it not be a problem ?
- 10. Is there any User Documentation ? Yes at: (a) <u>https://raw.githubusercontent.com/joseluisvelasco/KNOSOS/master/MANUAL</u> <u>/KNOSOSManual.pdf</u> (b) Paper at: https://arxiv.org/pdf/1908.11615.pdf

10. Is the domain a structured or unstructured one ? (Manual describes building a grid around α and λ , using centered and non-centered finite difference with second order accuracy, direct solver based on LU factorization from PETSc used).

11. If the number of species is **nbb** and the number of surfaces is **ns**, then is the total number of surfaces **nbb** * **ns** ? i.e. are there **ns** surfaces per species ? (Allocation of **nb(nbb,ns,nerr)** kind of indicates this ?)

12. In the file, input.surfaces what does the array S=0.01,0.04,0.09,0.16,0.25,0.36,0.49,0.64,0.81,0.95 indicate ? (How does it lead to the creation of a surface ? Do the coordinates come from boozer.txt ?)

13. rank(is,ierr)=irank what is the use of ierr? (Number of times calc is repeated?)

14. What is the relation between **boozer.txt** and **boozmn.nc**?

boozermn.nc - NetCDF file visualized with Panoply

Name	Long Name	Туре	File type: NetCDF-3/CDM
🕽 boozmn.nc	boozmn.nc	Local File	
aspect_b	aspect b	-	netcdf file:/home/bscuser/Downloads/PanoplyJ/boozmn.nc
G beta_b	beta b	1D	dimensions:
betaxis_b	betaxis b	-	dim_00038 = 38;
G bmnc_b	bmnc b	2D	radius = 99;
buco_b	buco b	1D	comput_surfs = 98;
😂 bvco_b	byco b	1D	mn_mode = 9224; mn_modes = 9224;
gmn_b	gmn b	2D	pack_rad = 98;
🥥 iota_b	iota b	1D	variables:
🥥 ixm_b	ixm b	1D	int nfp_b;
ixn_b	ixn b	1D	
🥥 jlist	jlist	1D	int ns_b;
lasym_logical_	lasym logical	-	
S mboz_b	mboz b		double aspect_b;
G mnboz_b	mnboz b	-	
nboz_b	nboz b	-	double rmax_b;
⊖ nfp_b	nfp b	=	double rmin_b;
ons_b	nsb	-	double fillin_b,
phi_b	phib	1D	double betaxis_b;
 phip_b 	phip b	1D	000000000000000000000000000000000000000
<pre>pmns_b</pre>	pmns b	2D	int mboz_b;
pres_b	pres b	1D	
G rmax_b	rmax b	-	int nboz_b;
⊖ rmin_b	rmin b	-	
G rmnc_b	rmnc b	2D	int mnboz_b;
 version 	version	-	
zmns_b	zmns b	2D	char version(dim_00038=38);
211115_0	211113.0	20	<pre>int lasym_logical;</pre>
			<pre>double iota_b(radius=99);</pre>
			<pre>double pres_b(radius=99);</pre>
			<pre>double beta_b(radius=99);</pre>
			<pre>double phip_b(radius=99);</pre>
			<pre>double phi_b(radius=99);</pre>
			<pre>double bvco_b(radius=99);</pre>
			<pre>double buco_b(radius=99);</pre>
			<pre>int jlist(comput_surfs=98);</pre>
	Show: All variables 🗸 👻		<pre>int ixm_b(mn_mode=9224);</pre>

15. Do all processes read the *same values* from the **boozermn**.nc file ?