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news

• ATEP	2022	report	submitted,	signed	Dec	2022;	no	feedback	so	far	

• 8th	Feb:		monitoring	of	the	progress	made	by	projects	in	2022	by	E-TASC	Scientific	Board	(20	
mins)	

• conferences:	Matteo,	Xin	invited	talks	at	EPS	

• IAEA	FEC	synopses	to	be	prepared;	ATEP	related:	Philipp,	Fulvio,	Matteo,	Gregorio,	Guo,	
Thomas,	Xin,		Alessandro,	others?	

• travel	plans	in	2023	

• need	to	grow	closer	connections	to	TSVV11	-	e.g.	integration	of	models	into	transport	codes



ATEP code: updates
Ph. Lauber
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equilibrium
timemhd_linear

distributions
transport code

new ATEP results using the kick-model limit

calculate 
linear mode 
spectrum 

calculate PSZS 
with prescribed 

amplitude

calculate 
D(r,E) or

shortcut: 
critical  

gradient model 
with ad hoc D, 

local limit

advance 
FEP 

and return 
updated distribution 

IDS, 
or its moments 
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JT-60SA: successful coupling of EP WF and ATEP to JINTRAC output 
(scenario 2, 70000,419) [L Garzotti]

MHD kinetic

available on gateway

TAE

EAE

odd
even

even	TAEs	strongly	
damped	

odd	TAEs	and	EAEs	at	
higher	frequency	are	
weakly	damped

[WPSA	Deliverable	SA-SE.CM.M.04-
T002-D001,		Dec.	Lauber	2022]
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EP-WF	has	been	adopted	to	cope	with	co-	and	counter	propagating	modes

JT-60SA - used mode spectrum: odd TAEs and EAEs
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PSZS for EAEs and odd TAEs

resonances	with	both	positive	and	negative	gradients	of	FEP	possible

all	plots	for	Λ=μB0/E=0.24	

δB/B	=[1.0-7.0	10-4]	
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δF(t)=F(t=40)-F(t=0)	in	COM	space	(Λ=μB0/E=0.24)	for	the	set	of	odd	co	and	counter	propagabng	TAEs

solving the PSZS equation (kick-model limit): TAEs

both	gradients	are	depleted
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δF(t)=F(t=40)-F(t=0)	in	COM	space	(Λ=μB0/E=0.24)	for	the	set	of	co	and	counter	propagabng	EAEs

much	smaller	EP	transport	(4	times	smaller)	that	odd	TAEs	(using	the	same	saturation	rule	γ~A2		)	
next:	how	do	these	modes	affect	the	current	deposition?		mapping	back	and	take	moments…

solving the PSZS equation (kick-model limit): EAEs
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mapping from marker space to COM space and back

bin	all	markers	on	same	orbit	to		
(Pz,E,Λ)-	grid	and	sum	over	weights	to	
obtain	density	in	COM	space	F(Pz,E,Λ)

evolve	PSZS	
transport	equation	
i.e.	update	Fu(Pz,E,Λ)

distribute	new	weight	proportional	to	original	
weights,	i.e.	scale	all	marker	weights	of	
certain	bin	by	Fu(Pz,E,Λ)/F(Pz,E,Λ)
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mapping from marker space to COM space and back

evolve	PSZS	
transport	equation	
i.e.	update	Fu(Pz,E,Λ)

then	calculate	moments	and/or	transport	
coefficients	to	be	used	in	connected	codes

bin	all	markers	on	same	orbit	to		
(Pz,E,Λ)-	grid	and	sum	over	weights	to	
obtain	density	in	COM	space	F(Pz,E,Λ)
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equilibrium
timemhd_linear

distributions
transport code

calculate 
linear mode 
spectrum 

calculate PSZS 

calculate 
D(r,E) 

advance 
FEP 

and return 
updated distribution 

IDS, 
or its moments 

or

use  
 NL code/model 

for intensity closure

t t+1

next step: QL limit and beyond

EP WF (LIGKA)

saturation rule: HAGIS or ORB5

ATEP code [Ph. Lauber, 2022]

orbit+zonal averaging

ATEP code: solve transport equation for PSZS with sources and collisions

[M. Falessi 2017-2022]

can be extended to 
include zonal structures 
driven by turbulence and 
their mutual interaction
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towards multi-mode, QL implementation: investigate two-mode system

•calculate <dPz/dt> , <dE/dt> for given fixed mode structures - here: scan amplitudes in 2 mode system

rho_pol_norm

TAE, n=16,17

<dPz/dt>

typical grid: (Pz,E,Λ) (128x40x40)

integrated over E
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n=17

n=16+17

n=16

(P16+P17)-P(16+17)
P(16+17)max

detailed insight into multi-mode cases: amplitude scan: dB/B=0.5 *10-3 
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detailed insight into multi-mode cases: amplitude scan: dB/B=1 *10-3 



ATEP progress meeting, 27.1.2023
17

n=16

n=17

n=16+17
P16+P17-P(16+17)

P(16+17)max

single

single

both

relative difference

|Pz|

|Pz|

|Pz|

|Pz|

        
Λ

        
Λ

        
Λ

        
Λ

detailed insight into multi-mode cases: amplitude scan: dB/B=5 *10-3 
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(P16+P17)-P(16+17)
P(16+17)max

relative difference

start to investigate multi-mode cases: amplitude scan

dB/B=0.5 *10-3 dB/B=1 *10-3 dB/B=5 *10-3 

• multi-mode systems need careful treatment when going from isolated mode case to resonance-overlap (diffusive) regime:

• depending on amplitude, trapped and passing particles show different relative importance for causing resonance overlap (FOW vs 
resonance width)  - consistent treatment of resonance broadening is needed
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610 - only n=16 609  n=16+17611 - only n=17

two mode system (n=16,17, see above): dB/B=0.5 *10-3 

|Pz| |Pz| |Pz|
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603 - only n=16 604  n=16+17605 - only n=17

two mode system (n=16,17, see above): dB/B=1 *10-3 

|Pz| |Pz| |Pz|
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4D PSZS: Pz,E,Λ,δB/B (=amplitude)

• run previously developed WF for calculating PSZS 
(FINDER/HAGIS) and store in difference IDS occurrences

• import into ATEP code (typically 3-5 different amplitudes 
δB/B =10-5, 10-4,,10-3, ,10-2)

• interpolate in COM space, then construct 4D object

• this	‘map’	will	be	used	when	saturation	
rules	are	applied	(closure	of	QL	model)	

• it	includes	resonance	broadening	and	
transitions	from	isolated	to	overlapping	
modes	

• it	is		NOT	yet	self-consistent,	i.e.	ratio	of	
mode	amplitudes	is	fixed	

• use	E-conservation	considerations	of	PSZS	
transport	equation	to	determine	energy	
transfer	to	mode	and	change	mode	
amplitude(s)	accordingly	

• in	case	of	multi-mode	system	use	a	rule,	
e.g.	ratio	of	linear	growth	rates	γ2~A,	to	
‘distribute’	free	energy	to	mode	amplitude	

• powerful	but	also	‘expensive’	object	-	
various	ideas	to	speed	up	its	calculation
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outlook:		

• combine	all	elements	-	neoclassics	(Guo),	QL	mode,	and	back-mapping	

• start	to	think	how	to	include	zonal	field	as	given	from	non-linear	simulations,		
i.e.	rules	how	to	infer	radial	structure	and	amplitude	scaling		(e.g.	forced	
driven	cases)	

in	parallel:	benchmarking	and	validation	

• follow	up	on	agreed	test	cases:	attach	to	non-linear	AUG	NLED	case	
benchmark	effort	(Gregorio)	

• work	on	latest	ITER	‘flagship’	15	MA	simulation	-	help	from	JINTRAC	group,	
M.	Schneider	needed
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2023	outlook



ENR	mid	term	review,	28.9.2022
24

• End 2021   WP1-D1  Complete transport theory of Phase Space Zonal Structures and Zonal State separating its microscale 
structures from macro-/meso- scale components (last report)

• End 2022  WP1-D2  Explicit expressions of phase space fluxes as input for WP2
• mid 2024  WP1-D3  Self-consistent description of EPM repeated burst dynamics using the PSZS theoretical framework 

• End 2021  WP2.1-D1  DAEPS in general tokamak geometry           
• mid 2023  WP2.1-D2  Reduced EP transport model in tokamaks   
• mid 2024 WP2.1-D3 DAEPS in general stellarator geometry 

• End 2022  WP2.2-D1  Fast analytical LIGKA version including trapped particles 
• End 2023  WP2.2-D2 Fast analytical LIGKA model including guesses for global mode structures and non-Maxwellian distribution 

functions                

• Mid 2022  WP2.3-D1 Explicit expressions for local eigenvalue code in 3D (ongoing, end October 2022)     
• mid 2024 WP2.3-D2 Local eigenvalue code in 3D (LIGKA) including passing particles 

• End 2022  WP3.1-D1  Validated 1D reduced model for EP transport in ITER/DTT 
• mid 2024  WP3.1-D2 Systematic statistical analysis of test particle transport and assessment of diffusive vs. non diffusive 

behaviours - jointly with WP3.2 

Deliverables 1

fully	
partly	
not	started
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• End 2022  WP3.2-D1  Insights into short- and long-time relaxation dynamics of a non- thermal plasma with intense 
energetic particle component )

• mid 2024 WP3.2-D2 Practical basic understanding of convective radial transport of energetic particles versus the possible 
non-local transport regimes 

• Mid 2024  WP3.3-D1  Availability of validated reduced phase space transport model based on LIGKA/HAGIS/RABBIT 
within IMAS framework (ATEP 3D)

• End 2022  WP3.4-D1  Validated version of RABBIT including model for fluctuation-induced radial transport of EPs  
(postponed to 2023)  

• End 2022/23  WP3.5-D1  Hybrid kinetic-MHD results for V&V of transport models: with generalized distributions functions 
and collisions for AUG, ITER, DDT.      

• mid 2024  WP3.5-D2 STRUPHY will deliver long time-scale simulations for V&V purposes (demonstrating conservation 
properties of advanced coupling scheme) based on the same equilibria as XHMGC, HYMAGYK, MEGA and ORB5 

• End 2022/23  WP3.6-D1  Deliver quantitative criteria for transitions between different transport regimes w/o turbulence 
and ZF/ZSs  using experimentally relevant parameters

• End 2022  WP4-D1  Availability of reference scenarios (ITER, AUG, DTT) for application of transport models      

Deliverables 2 



ENR	mid	term	review,	28.9.2022

Milestones 1

26

1 WP1-M1  2D and 3D formulation of Phase Space Zonal Structures transport equations, and definition of 
Zonal State with corresponding equations for Zonal Field Structures governing equations with separated 
dependences from nonlinear radial envelope and parallel mode structures,     end 2021
2 WP1-M2  study of EPM dynamics in the presence of linearized collision integral and source terms, end 2022

3  WP2.1-M1   Benchmark of DAEPS in general toroidal geometry against reduced local LIGKA analysis for 
trapped particles,   mid 2022 
      
4  WP2.1-M2  Computation of nonlinear coupling coefficients in the nonlinear envelope equation and of EP 
fluxes in phase space,     end 2022 

5 WP2.1-M3  Benchmark of DAEPS in general stellarator geometry (jointly with WP2.3), end 2023

6  WP2.2-M1    Develop (semi-)analytical trapped particle model for LIGKA,    mid 2022 
         
7  WP2.2-M2   Test and tune analytical global mode structure model for LIGKA/HAGIS,    end 2022 

fully	
partly	
not	started
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8  WP2.2-M3 Generalize fast analytical LIGKA version to non-Maxwellian distribution functions, in particular 
slowing down     End 2023  (Master Project started - Riccardo Stucchi)
      
9 WP2.3-M1   Derive equations for local LIGKA-like version in 3D Mid 2022  (slightly delayed - end 2022)
      
10 WP2.3-M2 Local eigenvalue code in 3D (LIGKA) including passing particles    End 2023 
         
11  WP3.1-M1    Implementation of the 1D “mapping” in general geometry    End 2021 
         
12   WP3.1-M2    Interface of the 1D “mapping” in the ITER/IMAS workflow; Investigation of the influence of 
turbulence on the 1D "mapping"    End 2022
        
13   WP3.2-M1 Probability density function of the radial displacements of tracer particles deduced from EP 
transport models    Mid 2022 
        
14   WP3.2-M2 The hypothesis of super-diffusive spreading of tracer particles on Lévy flights tested in simulations, 
hybrid flight- convective model complete   mid 2023 

 

Milestones 2

fully	
partly	
not	started
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15  WP3.3-M1   Extend unperturbed orbit integration routines and averaging procedures in 
order to calculate phase space fluxes in HAGIS  mid 2022  (fully)

16  WP3.3-M2  Explore methodology and possibly implement RABBIT as EP source into HAGIS 
End 2023 (ongoing)

17  WP3.3-M3   Finish reduced EP transport workflow based in LIGKA/HAGIS within IMAS 
mid 2024 (ongoing)

18  WP3.4-M1  Develop and implement radial diffusion model to RABBIT   End 2022  
(postponed to 2023)

19  WP3.4-M1    Apply extended RABBIT model to transient events, e.g. EP evolution during 
sawtooth cycles   End 2023 

Milestones 3

fully	
partly	
not	started
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20  WP3.5-M1  Flux calculations for frequency-chirping modes, compared to fixed frequency modes; 
add magnetic axis to STRUPHY  End 2021 
             
21  WP3.5-M2 Implementation of generic EP distributions into XHMGC, HYMAGYK and MEGA; add 
drift-kinetic model to STRUPHY; couple to GVEC 3D equilibrium solver for application to tokamaks 
and stellarators 

22 WP3.6-M1   Calculate zonal structures in the presence of turbulence with ORB5 for validation of 
the reduced models  End 2021

23 WP3.6-M2  Calculate particle and heat transport in the presence of turbulence with ORB5 for 
validation of the reduced models  End 2022             

24  WP4-M1  Plan and conduct AUG experiments in the view of clear and well-diagnosed transitions 
between EP transport regimes   End 2021/22 
        

Milestones 4

fully	
partly	
not	started
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started to model JET TAE damping rates as measured by TAE antenna

present	equilibrium	information	in	IMAS	
is	not	sufficient	for	automatic	modelling….

#96182	
(thx	to	J	Fereira)
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damping	rates	-	inner	TAE	gap
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typical quasi-linear scheme:

initial FEP, 
amplitudes Φ 

mode structures

determine γ 
from FEP

evolve Φ calculate D 
from A

calculate FEP 
using D

BERK et al. 

In Section 2 we describe the physical self-consistent 
line broadened quasi-linear model. In Section 3 we dis- 
cuss the theory for the non-linear domino effect. In 
Section 4 we present preliminary numerical results for 
the bump-on-tail instability. In Section 5 we discuss 
how the method can in principle be extended to more 
complicated geometry. In Section 6 a brief conclusion 
is presented. 

2. LINE BROADENING MODEL 

It has been previously observed that the Alfvkn 
wave problem is mathematically similar to the one 
dimensional bump-on-tail problem. Here we consider 
the case where in both problems the wave spectrum 
is discrete. According to quasi-linear theory, diffusion 
only occurs for the particles that exactly fulfil the reso- 
nance condition. In the bump-on-tail problem the res- 
onance condition is On = wn - k n v  = 0, with wn the 
eigenfrequency for the nth mode (for the bump-on- 
tail problem we take wn = wpe electron plasma fre- 
quency). For a potential of the form 

the quasi-linear equation for the evolution of the dis- 
tribution function, f (v),  takes the form 

Here, Q  ̂ is a shorthand notation for the quasi-linear 
operator, t is time, e and m are the energetic parti- 
cle charge and mass, v is the energetic particle speed 
and the amplitude of the perturbed electrostatic 
potential. 

Associated with Eq. (1) is the wave evolution equa- 
tion, which, written as the evolution of wave momen- 
tum Wn, is of the form 

a - wn = 27, wn 
at 
where 

Ikn 4no12 wn = 
277 vn 

W n  
U, = - 

kn 

(3) 

(4) 

Note that Eqs (1)-(4) imply conservation of momen- 
tum, 

(5) 

with C a time independent constant. 
There is, however an intrinsic difficulty in solving 

Eqs (1) and (3) if one takes the expression for D ( v )  
in Eq. ( 2 )  literally. This is because the domain of the 
diffusion coefficient is 'over a point'. Consequently, as 
written, the distribution function can only relax in an 
infinitesimal interval. In reality the diffusion domain 
should have a width in U. In fact when a finite growth 
rate, -yn > 0, is taken into account, the diffusion coef- 
ficient is broadened as one finds 

In fact the quasi-linear coefficient is really best applica- 
ble when there may be waves that cause orbit stochas- 
ticity due to mode overlap. Only then is the diffu- 
sion coefficient independent of yn.  Other cases can- 
not be treated as rigorously. When we do not have 
orbit stochasticity, we seek a method that realistically 
models the conversion of particle momentum to wave 
momentum. The results of the model system we use 
can be benchmarked with rigorously derived simula- 
tion results to ascertain the system's accuracy. 

When we have steady waves, without orbit over- 
lap, it is well known that the mean distribution flat- 
tens around the resonant particle region over a width 
that is comparable to the separatrix width of the 
wave-particle interaction [15, 161. A rigorous solution 
requires accounting for the wave-particle phase in cal- 
culating the wave-particle interaction. However, one 
can hope to model the wave-particle interaction by 
assuming that particles roughly within the separatrix 
width can stochastically mix in phase space, but par- 
ticles outside the separatrix width move adiabatically 
with the wave and do not mix in phase space. For the 
bump-on-tail problem we take the nth electrostatic 
wave to be of the form 

$ n ( Z , t )  = 2l$nJsin(knx -writ) (7) 

For simplicity, we take $,, to be real and positive. A 
conserved quantity is the energy in the wave frame, 
which is given by 

Particles for which -2e4,, < E,  < 2e&, lie inside 
the phase space separatrix. Particles on the separatrix 
satisfy 
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with C a time independent constant. 
There is, however an intrinsic difficulty in solving 

Eqs (1) and (3) if one takes the expression for D ( v )  
in Eq. ( 2 )  literally. This is because the domain of the 
diffusion coefficient is 'over a point'. Consequently, as 
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should have a width in U. In fact when a finite growth 
rate, -yn > 0, is taken into account, the diffusion coef- 
ficient is broadened as one finds 

In fact the quasi-linear coefficient is really best applica- 
ble when there may be waves that cause orbit stochas- 
ticity due to mode overlap. Only then is the diffu- 
sion coefficient independent of yn.  Other cases can- 
not be treated as rigorously. When we do not have 
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can hope to model the wave-particle interaction by 
assuming that particles roughly within the separatrix 
width can stochastically mix in phase space, but par- 
ticles outside the separatrix width move adiabatically 
with the wave and do not mix in phase space. For the 
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onance condition is On = wn - k n v  = 0, with wn the 
eigenfrequency for the nth mode (for the bump-on- 
tail problem we take wn = wpe electron plasma fre- 
quency). For a potential of the form 

the quasi-linear equation for the evolution of the dis- 
tribution function, f (v),  takes the form 

Here, Q  ̂ is a shorthand notation for the quasi-linear 
operator, t is time, e and m are the energetic parti- 
cle charge and mass, v is the energetic particle speed 
and the amplitude of the perturbed electrostatic 
potential. 

Associated with Eq. (1) is the wave evolution equa- 
tion, which, written as the evolution of wave momen- 
tum Wn, is of the form 

a - wn = 27, wn 
at 
where 

Ikn 4no12 wn = 
277 vn 

W n  
U, = - 

kn 

(3) 

(4) 

Note that Eqs (1)-(4) imply conservation of momen- 
tum, 

(5) 

with C a time independent constant. 
There is, however an intrinsic difficulty in solving 

Eqs (1) and (3) if one takes the expression for D ( v )  
in Eq. ( 2 )  literally. This is because the domain of the 
diffusion coefficient is 'over a point'. Consequently, as 
written, the distribution function can only relax in an 
infinitesimal interval. In reality the diffusion domain 
should have a width in U. In fact when a finite growth 
rate, -yn > 0, is taken into account, the diffusion coef- 
ficient is broadened as one finds 

In fact the quasi-linear coefficient is really best applica- 
ble when there may be waves that cause orbit stochas- 
ticity due to mode overlap. Only then is the diffu- 
sion coefficient independent of yn.  Other cases can- 
not be treated as rigorously. When we do not have 
orbit stochasticity, we seek a method that realistically 
models the conversion of particle momentum to wave 
momentum. The results of the model system we use 
can be benchmarked with rigorously derived simula- 
tion results to ascertain the system's accuracy. 

When we have steady waves, without orbit over- 
lap, it is well known that the mean distribution flat- 
tens around the resonant particle region over a width 
that is comparable to the separatrix width of the 
wave-particle interaction [15, 161. A rigorous solution 
requires accounting for the wave-particle phase in cal- 
culating the wave-particle interaction. However, one 
can hope to model the wave-particle interaction by 
assuming that particles roughly within the separatrix 
width can stochastically mix in phase space, but par- 
ticles outside the separatrix width move adiabatically 
with the wave and do not mix in phase space. For the 
bump-on-tail problem we take the nth electrostatic 
wave to be of the form 

$ n ( Z , t )  = 2l$nJsin(knx -writ) (7) 

For simplicity, we take $,, to be real and positive. A 
conserved quantity is the energy in the wave frame, 
which is given by 

Particles for which -2e4,, < E,  < 2e&, lie inside 
the phase space separatrix. Particles on the separatrix 
satisfy 

1662 NUCLEAR FUSION, Vol. 35, No. 12 (1995) 

BERK et al. 

In Section 2 we describe the physical self-consistent 
line broadened quasi-linear model. In Section 3 we dis- 
cuss the theory for the non-linear domino effect. In 
Section 4 we present preliminary numerical results for 
the bump-on-tail instability. In Section 5 we discuss 
how the method can in principle be extended to more 
complicated geometry. In Section 6 a brief conclusion 
is presented. 

2. LINE BROADENING MODEL 

It has been previously observed that the Alfvkn 
wave problem is mathematically similar to the one 
dimensional bump-on-tail problem. Here we consider 
the case where in both problems the wave spectrum 
is discrete. According to quasi-linear theory, diffusion 
only occurs for the particles that exactly fulfil the reso- 
nance condition. In the bump-on-tail problem the res- 
onance condition is On = wn - k n v  = 0, with wn the 
eigenfrequency for the nth mode (for the bump-on- 
tail problem we take wn = wpe electron plasma fre- 
quency). For a potential of the form 

the quasi-linear equation for the evolution of the dis- 
tribution function, f (v),  takes the form 

Here, Q  ̂ is a shorthand notation for the quasi-linear 
operator, t is time, e and m are the energetic parti- 
cle charge and mass, v is the energetic particle speed 
and the amplitude of the perturbed electrostatic 
potential. 

Associated with Eq. (1) is the wave evolution equa- 
tion, which, written as the evolution of wave momen- 
tum Wn, is of the form 

a - wn = 27, wn 
at 
where 

Ikn 4no12 wn = 
277 vn 

W n  
U, = - 

kn 

(3) 

(4) 

Note that Eqs (1)-(4) imply conservation of momen- 
tum, 

(5) 

with C a time independent constant. 
There is, however an intrinsic difficulty in solving 

Eqs (1) and (3) if one takes the expression for D ( v )  
in Eq. ( 2 )  literally. This is because the domain of the 
diffusion coefficient is 'over a point'. Consequently, as 
written, the distribution function can only relax in an 
infinitesimal interval. In reality the diffusion domain 
should have a width in U. In fact when a finite growth 
rate, -yn > 0, is taken into account, the diffusion coef- 
ficient is broadened as one finds 

In fact the quasi-linear coefficient is really best applica- 
ble when there may be waves that cause orbit stochas- 
ticity due to mode overlap. Only then is the diffu- 
sion coefficient independent of yn.  Other cases can- 
not be treated as rigorously. When we do not have 
orbit stochasticity, we seek a method that realistically 
models the conversion of particle momentum to wave 
momentum. The results of the model system we use 
can be benchmarked with rigorously derived simula- 
tion results to ascertain the system's accuracy. 

When we have steady waves, without orbit over- 
lap, it is well known that the mean distribution flat- 
tens around the resonant particle region over a width 
that is comparable to the separatrix width of the 
wave-particle interaction [15, 161. A rigorous solution 
requires accounting for the wave-particle phase in cal- 
culating the wave-particle interaction. However, one 
can hope to model the wave-particle interaction by 
assuming that particles roughly within the separatrix 
width can stochastically mix in phase space, but par- 
ticles outside the separatrix width move adiabatically 
with the wave and do not mix in phase space. For the 
bump-on-tail problem we take the nth electrostatic 
wave to be of the form 

$ n ( Z , t )  = 2l$nJsin(knx -writ) (7) 

For simplicity, we take $,, to be real and positive. A 
conserved quantity is the energy in the wave frame, 
which is given by 

Particles for which -2e4,, < E,  < 2e&, lie inside 
the phase space separatrix. Particles on the separatrix 
satisfy 

1662 NUCLEAR FUSION, Vol. 35, No. 12 (1995) 

until γ=0, gradients exhausted, or γL=γD 

add effective collisions, sources

+self consistent 
resonance broadening

kick model/ quasi-linear diffusion model

calculate kick 
matrix

kick model scheme:

initial FEP, prescribe 
amplitudes Φ, 

mode structures

calculate FEP 

 effective collisions, sources handled by collisional SD code
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(WP1-D2 fully)phase space flux

[Y.Y. Li et al, invited talk Varenna Theory meeting 2022, 
 PPCF paper, in preparation]

derived explicit analytical expressions for fluxes:

WP1: theoretical framework

+ 3D version of PSZS equation [A. Zocco et al, draft Aug 2022, DTT Seminar Oct 2021]
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WP2.1, WP3.3 explicit calculation of PSZSs

36

DAEPS LIGKA/HAGIS

DTT,	TAE ITER,	TAE
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by zonal averaging of a representative particle ensemble, calculate <dPz/dt>, i.e. radial transport for given 
set of fixed mode structures at fixed amplitudes, write as IDS object in COM Pz,E,Λ [Lauber DTT seminar, 
5/2022, Bierwage et al, ID: 30554] 

<dPz/dt> <dPz/dt>
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<dPz/dt>

can be easily mapped to <s>: 
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WP 3.3 Extend HAGIS/LIGKA framework to calculate EP fluxes

37

rh

TAE, n=16,17

(integrated over Λ): (integrated over E): 
(integrated over Pz): 

WP3.3-M1   Extend unperturbed orbit integration routines and averaging procedures in order to calculate phase space 
fluxes in HAGIS  mid 2022  (fully)
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calculation of diffusions coefficients: D(s,E) and D(s)
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E integration

to be done: transform from<dPz>2/<dt> to D(s,E)=<ds>2/<dt> 

and feed back to transport code

<dPz/dt>

WP 3.3 Extend HAGIS/LIGKA framework to calculate EP fluxes

38
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WP 3.3 ATEP code: advance transport equation 

39

simple finite difference scheme to start with (final scheme to be decided when sources/collisions are implemented): 

full F:

runtime: several seconds

note: term excluded so far: dPz/dt assumed constant -> kick model limit 

radial	coordinate

radial	coordinate

delta F:

Mid 2024  WP3.3-D1  Availability of validated reduced phase space transport model based on LIGKA/HAGIS/RABBIT within IMAS framework (partly)



ENR	mid	term	review,	28.9.2022

WP 3.3 ATEP code: advance transport equation 

40

simple finite difference scheme to start with (final scheme to be decided when sources/collisions are implemented): 

full F:

runtime: several seconds

note: term excluded so far: dPz/dt assumed constant -> kick model limit 

radial	coordinate

radial	coordinate

dF/dt: maximal transport at resonance boundaries:

Mid 2024  WP3.3-D1  Availability of validated reduced phase space transport model based on LIGKA/HAGIS/RABBIT within IMAS framework (partly)
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WP 3.3/3.4 Extend HAGIS/LIGKA framework to calculate EP fluxes 
 

41

using ITER NBI off-off axis configuration radial	coordinate

Mid 2024  WP3.3-D1  Availability of validated reduced phase space transport model based on LIGKA/HAGIS/RABBIT within IMAS framework (partly)
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WP 4 - reference cases based on experimental scenarios

43

End 2021/22  WP4-M1  Plan and conduct AUG experiments in the view of clear and well-diagnosed transitions 
between EP transport regimes     

End 2022  WP4-D1  Availability of reference scenarios (ITER, AUG, DTT) for application of transport models      

presently	the	following	scenarios	are	available	on	ITER/Gateway	(IMAS)	and	
have	been	investigated	with	the	EP	stability	WF:	

AUG*						
TCV*	[M.	Vallar,	subm	NF,	ID	33003]	
JT-60SA	
DTT	(updated	scenarios	soon)*		
ITER*:	15MA	(various),	PFPO2

*time	dependent

further	needs:	location	for	publicly	available	IMAS	database	for	sharing	on	gateway,	
with	standard	for	'mandatory	fields’	in	IDS
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WP 4: AUG reference case: L-H transition in presence of TAEs 

•analyse L-mode,H-mode and transition phase 
using 

•systematic uncertainty quantification feasible 
•bursty and steady-state phases visible, in 
agreement with damping analysis and drive - EP 
transport? 

•speed up WF using ML methods [V.-A. Popa] 

L-mode H-mode

n=2 TAE
IDA +

TRVIEW +
EP-WF: LIGKA  local +
EP-WF: LIGKA  global    
to

r. 
m

od
e 

nu
m

be
r

[s] [s]

AUG EP ‘supershot’ scenarios: D NBI into D plasmas, D -> H and H-> H 

[Lauber,	EPS	2022,ID	31591]
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WP 4 - isotope scans
• July 2022: D NBI in He plasmas - ideal for numerical isotope studies, stability FOW/

FLR effects and EP transport under stationary conditions 

45off       off/on    off/on/on       off

for	some	shots:	FIDA	data	
available

in	depth	analysis	started	34924/25/39681/41437

tor.	
mode		
numbers
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WP 4  projected ITER scenarios (HFPS): #134173, 106 
[S.D. Pinches, plenary EPS 2022]

TAE n=18

identified end of power ramp-up phases as most critical time points
for in-depth EP transport analyses

[s][s]
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ENR 
ATEP 

summary, outlook, dissemination of results

 

TSVV#10	burning	plasmas	
TSVV#11	plasma	performance	
ACH

AUG,	TCV,	JET,	W7-X,	WPTE

WPSA,DTT

ITER,	ITPA

CNPS

• new	theoretical	framework		
• new	common	concept	of	connecting	non-linear	code	results	to	reduced	models	(PSZS)	
• new	common	EP	(transport)	code	developments	-	explore	speed	up	possibilities			
• new	analysis	methods	
• new	IMAS	based	infrastructure	

established	and	growing	
connections	to	other	WPs:

ATEP	aims	to	‘enable’	new	routes	to	EP	transport	analysis	and	prediction	via:

astrophysics


