

Developing space instrumentation Systems engineering from definition to verification

T. Prod'homme

14/05/2024 ESI2024

ESA UNCLASSIFIED - For ESA Official Use Only

Disclaimer

- Material presented is based on hands-on experience
- Biased towards ESA science missions
- Biased towards earlier phases

Developing space instrumentation: outline

- Space instrumentation
 - Definitions
 - Examples
 - Product tree
- Systems engineering (SE) basics
 - Lifecycle, TRL & model philosophy
 - The V model
 - Requirements
 - SE domains
 - Trade-off exercise
- Examples of
 - Definition phases activities
 - Implementation phases activities
- A few references to go more in-depth

Definitions: Systems

A **system** is an arrangement of parts or elements (*sub-system*) that together exhibit behaviour or meaning that the individual constituents do not

=> emerging properties

Systems Engineering is a transdisciplinary and integrative approach to enable the successful realization, use, and retirement of engineered systems, using systems principles and concepts, and <u>scientific, technological, and management methods</u>.

Systems Engineering provides facilitation, guidance and leadership to integrate the relevant disciplines and specialty groups into a cohesive effort, forming an appropriately structured development process that proceeds from concept to production, operation, evolution and eventual disposal.

=> life cycle

More definitions and background at www.incose.org/about-systems-engineering/

💳 💶 📲 🚍 💳 🛶 📲 🔚 📰 🔜 📲 🔜 🐜 🚳 🛌 📲 🗮 🕳 🖬 👘 🛏 ன

Instrument (oxford English dictionary)

- An object, device, or apparatus <u>designed</u> or used for a particular purpose or task. A tool, implement, or utensil used to <u>execute a piece of work</u>.
- To equip or provide (a machine, laboratory, experiment, etc.) with instruments for observing, measuring.

Space instrumentation often referred to as Payload

- Instrument designed to operate from space: onboard satellites, probes, rockets, space stations etc.
- Application: earth observation, astronomy, planetology, solar physics, fundamental physics etc. etc.
- Specificities: shall survive launch & space environment, shall be operated remotely
- Requires a complete testing programme: "test as you fly, fly as you test"

More background: en.wikipedia.org/wiki/Scientific_instrument

💳 🖬 🚼 💳 🖛 ┿ 📲 🔚 🚛 📲 🔚 📰 💳 📲 💳 🛶 🚳 🍉 📲 💥 🖬 🖬 📰 📾 🏣 🗰 🗰

Space instrument examples

- SCM KPWI search coil magnetometer
- RWI RPWI Radio Wave Investigation

Elauna ? HIICE and account and minu with danlawed

💻 🔜 📕 🚍 💳 🛶 📲 🔄 📲 🔜 📲 🔚 🔚 🔤 🛻 🔯 🖕 📲 🚼 🖬 🖬 ன 👘 → THE EUROPEAN SPACE AGENCY

Zooming on ESA astronomy mission: Gaia (2013)

→ THE EUROPEAN SPACE AGENCY

Gaia instruments: Imager, Photometers & Spectrometer @esa

→ THE EUROPEAN SPACE AGENCY

Product tree

System lifecycle overview = SE plan

project phases > milestones > instrument models

Model philosophy impacts **cost & schedule** greatly Option 1: Breadboard, EM, STM, PFM (refurbishment) Option 2: Breadboard, EM, STM, QM, FM

EM: Engineering Model STM: Structural Thermal Model QM: Qualification model PFM: Protoflight model

Other models: EFM, AVM, MTD etc.

System lifecycle: phases & TRL

V model in theory

V stands for Verification and Validation

- validation "Are you building the right thing?"
- verification by "Are you building it right?"

https://en.wikipedia.org/wiki/V-model

Closer to reality*

ECSS Standard Regina Moraes et al. IEEE 2021

*

Requirement basics

Requirements correspond to an identified critical system or subsystem need.

They are mandatory, must be complied with, and shall be verified.

Some basic rules

- Short/Synthetic
- Definite/Unambiguous
- Verifiable: input to the verification plan and model philosophy => cost, schedule, complexity driver
- Traceable: flow down from system to subsystem => one parent requirement max (see document tree)
- Formulated using terms that have been properly defined earlier

Requirement types

- Function: what <u>shall</u> this element do?
- Performance: how well shall it do it?
- Interface: how does it interface with another element?

Example of a performance requirement

Image quality requirement example for an optical system

MIS-0410 The Full Width at Half Maximum (FWHM) of the single-exposure polychromatic Point Spread Function (PSF) at any point within the Field of View over the exposure integration time shall be not greater than:

- 1.3 (TBC) arcsec in each of the visible bands (VIS-1 and VIS-2).
- 2.5 (TBC) arcsec in each of the near-infrared bands (NIR-1 and NIR-2).

What's not great? What is missing?

Example of a performance requirement

Image quality requirement example for an optical system

MIS-0410 The Full Width at Half Maximum (FWHM) of the single-exposure polychromatic Point Spread Function (PSF) at any point within the Field of View over the exposure integration time shall be not greater than:

- 1.3 (TBC) arcsec in each of the visible bands (VIS-1 and VIS-2).
- 2.5 (TBC) arcsec in each of the near-infrared bands (NIR-1 and NIR-2).

What's not great?

- Two requirements in one (VIS and NIR channels)
- Negative statement
- TBC values

What is missing?

- No parent requirement
- No verification method

Example of document tree

THESEUS Phase A Requirement Documents (2019-2021)

_

- **+**- -

*

→ THE EUROPEAN SPACE AGENCY

System engineering, sub-functions and boundaries

European Cooperation for Space Standardization ECSS

ECSS-E-ST-10C: System engineering general requirements

AIT = assembly, integration and test SW PA = Software Product Assurant PM&P = parts, materials and processes

→ THE EUROPEAN SPACE AGENCY

Space instrumentation SE domains

- Thermal
- Mechanics & structure
- Electrical and electronics
- Optics
- Detection
- And Mechanism, Radiation assurance, Contamination and cleanliness, EMC etc.
- Pointing (AOCS) & Power (more platform/satellite responsibility)
- Product Assurance & Quality Assurance (some times considered outside of SE activities)

💳 🔜 📲 🚍 💳 📥 📲 🔚 🔚 🔚 📲 🔚 📲 🚍 🛶 🔯 🍉 📲 👫 📲 🛨 📰 📾 🕍 🔸 The European space agency

Roles and responsibilities

Lead systems engineer or Systems lead

- coordinates all SE activities
- has the project full overview and arbitrate between domains
- can assume more responsibilities depending on project size e.g. project manager, performance, domain lead

Architects

- SE lead for a given domain e.g. thermal lead
- leads the overall SE domain activities:
 - manage requirements, design, analysis, verification planning and implementation for their own domain
 - a liaise with other disciplines in coordination with systems lead

Trade-off exercise: detector choice example

A trade-off is the process of chosing a baseline solution (chosing a baseline) by systematically checking for different domains the impact of different options.

Category	Param	Euclid readout chain	TBD CIS
Instrument performance	FoV (vignetting/format)	49 x 49 mm	45x43 mm
	Resolution	12um	10um
	SNR Readout noise Smear QE Saturation PRNU/DSNU Other (persistence/lag)	4e- 333 kHz max (9s frame time) Cannot be tuned for VIS1 FWC>150 ke-	<2e- but spread (+ NDR/UTR) No smear Better blue response Low FWC Possibly worse than CCD 2nd order eff. less known/glow
Payload development	Readout chain FPA implications	Well understood but mods still TBD Extension cables, ROE location TBD	Feasibility study - IP cores exchanged Easier to accommodate
	Testing	MSSL, ESA	ESA, Satlantis
Radiation hardness	CTI, Read noise, Dark	Depending on proton fluence, very detrimental effect to performance	Read noise evolution with TID, TNID, dark current TBC
	SEE		Digital output chip
System	Temperature of operation	< 200 K CCD temp. driven by radiation- induced CTI	>200K CIS temp. driven by eol dark current NDR and/or windowing enable VIS FGS
Programmatics	TRL Cost	TRL8-9 high	TRL3-4 medium

Phase 0/A/B activities: thermal activities example

Identifying needs, deriving requirements, establishing concept(s), trading, budgeting, verifying through modelling and analysis

Figure 10: Temperature mapping - reference case 32|55

ARRAKIHS phase A Courtesy of M. Broussely (ESA)

→ THE EUROPEAN SPACE AGENCY

eesa

Phase 0/A/B activities: budgeting & sensitivity analyses @esa

Channel		
Central wavelength [nm]		
ideal/DL PSF (monochromatic): FWHM [arcsec]		
Min top-level	requirement	
per exposure/System PSF FWHM [arcsec]		
Total budget a	available	
delta FWHM [arcsec]	0.85
equivalent sta	ndard deviation* (3-sigma) [arcsec]	0.93
Proposed spa	acecraft error contribution	
delta FWHM [arcsec]	0.55
equivalent standard deviation (3-sigma) [arcsec]		
Proposed ins	trument error contribution	
delta FWHM [arcsec]		0.44
equivalent sta	ndard deviation (3-sigma) [arcsec]	0.60
Reserve		None
delta FWHM [arcsec]	
equivalent sta	ndard deviation (3-sigma) [arcsec]	

ARRAKHIS phase A

Phase C/D activities: testing example

Manufacturing, Assembling, Integrating, Testing (e.g. Sine vibration, Acoustic, Shock, Thermal vacuum, EMC)

- Unit level first then system
- Qualification tests (e.g. on Structural and Thermal model) then acceptance tests (on the Flight model)

©ESA-Corvaja, (credit Airbus/IABG), at IABG space test centre

© IABG, SolO in TVTB chamber (credit ESA/Airbus/IABG)

Solar Orbiter phase C/D Courtesy of A. Pacros (ESA)

To go more in-depth

ECSS (European Cooperation for Space Standardization): https://ecss.nl/

Incose (International Council on Systems Engineering): www.incose.org

MBSE (Model-Based Systems Engineering): https://insights.sei.cmu.edu/blog/introduction-model-basedsystems-engineering-mbse/

Previous EIROforum instrumentation schools: e.g. https://indico.cern.ch/event/777129/contributions/3249528/

→ THE EUROPEAN SPACE AGENCY