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radiation effects in electronics:

any radiation/electronic device interaction that can perceptibly 
influence the expected behavior of the electronic device
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what are SEE effects?

Single Event Effects (SEEs) are any measurable disturbance 
on a circuit resulting from a single, energetic particle strike

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

example:
an energetic particle 
flips a bit in a memory
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… an inflight accident that included a pair of sudden, 
uncommanded pitch-down manoeuvres that caused severe 
injuries—including fractures, lacerations and spinal injuries
 …
Unrestrained (and even some restrained) passengers and 
crew were flung around the cabin or crushed by overhead 
luggage, as well as crashing with and through overhead-
compartment doors. 

https://www.youtube.com/watch?app=desktop&v=HKJ1lIh2Cgk&ab_channel=TheFlightChannel

https://en.wikipedia.org/wiki/Qantas_Flight_72

Qantas Flight 72
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Microsemi: Single Event Effects - A Comparison of Configuration Upsets and Data Upsets
https://www.microsemi .com/document-portal/doc_view/135837-wp0203-single-event-effect s-a-compari son-of-configuration-upsets-and-data-upset s 

https://www.microsemi.com/document-portal/doc_view/135837-wp0203-single-event-effects-a-comparison-of-configuration-upsets-and-data-upsets
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~1h course on SEE on Neural Networks
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https://www.thegamer.com/how-ionizing-particle-outer-space-helped-super-mario-64-speedrunner-save-time/
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neutral atom 
or molecule

charged atom 
or molecule

energetic particle

interaction with 
an electron

electron-hole pair

e-

h+

IONIZATION
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if the ionizing particle and/or the emitted electron have 
enough energy, they can ionize other atoms along their path

multiple electron-hole pairs

+

+

+

+
+

+
+

+

+
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-
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https://tmrg.web.cern.ch/tmrg/tmrg_kulis_in2p3.pdf

n-doped Si
(V > 0)

p-doped Si
(V = 0)

depletion
region

what are SEE effects?

The effect of the current 
spike depends on where 
(i.e., in which circuit, cell, 
node, etc.) it occurred
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non-destructive

• Single/Multi Event Upset

• Single Event Transient

• etc… 

destructive

Single Event Effects 

• Single Event Latch-Up
        (potentially destructive)

• Single Event Burn-out

• Single Event Gate Rupture

• etc… 
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BIT-UPSET = change in the value of a bit caused by a particle

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Single-bit-upset (SBU)

2023/07/20 giulio.borghello@cern.ch 16
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B = 0 V

A = VDD

example: SRAM cell

A = VDD B = 0 V
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B = 0 V

VGS = -VDD
VDS = 0 V

VGS = 0 V
VDS = VDD

A = VDD

example: SRAM cell

node A
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for the spike current to flow, the pMOS must 
turn on, lowering the voltage in node A

example: SRAM cell

node A
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for the spike current to flow, the pMOS must 
turn on, lowering the voltage in node A

B=VDD enforces A=GND
-> the error is latched 
into the memory cell!

example: SRAM cell

node A
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SEGR in power MOSFETs

G. K. Lum et al., "New experimental findings for single-event gate rupture in MOS capacitors and linear devices," in IEEE 
Transactions on Nuclear Science, vol. 51, no. 6, pp. 3263-3269, Dec. 2004, doi: 10.1109/TNS.2004.840262.

metallization 
burnout after SEGR

(a) Schematic view of power MOSFET cross section.
(b) ON mode. Current flows from source to drain. No electrical field 
in  N/N+ drain junction.
(c) OFF mode. An ionized track crosses the structure. High electrical  
field in N/N+ drain junction separates its (+) and (-) charges.
(d) The (+) charges accumulate below gate oxide, and image (-) 
charges accumulate above gate oxide.
(e) This causes a high electrical field through the gate oxide, which  
causes a gate rupture.



introduction on radiation effects in electronics and detectors
8th EIROforum School on Instrumentation

2024/05/14 giulio.borghello@cern.ch | CERN EP-ESE-ME 23

How different particles ionize the material?
(from the point of view of radiation effects in electronics)
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CMS

https://three.jsc.nasa.gov/concepts/SpaceRadiationEnviron.pdf 

SPACE

W. Adam et al 2017 JINST 12 P06018, DOI 10.1088/1748-0221/12/06/P06018

Different applications have different radiation environments!

neutron flux at sea level: ~ 18 neutrons/cm2-hour with E>2 MeV
https://www1.lnl.infn.it/~lnldir/Seminario%20sorgenti/PDF/Wyss.pdf 

https://three.jsc.nasa.gov/concepts/SpaceRadiationEnviron.pdf
https://www1.lnl.infn.it/~lnldir/Seminario%20sorgenti/PDF/Wyss.pdf
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direct ionization

energetic 
charged particle

interaction with 
an electron

e-

indirect ionization
all particles!

10Bn

7Li

α

charged particle (ion)

γ
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Calculated as electrical stopping power from SRIM tables:
J.F. Ziegler and J.P. Biersack, “Stopping and range of ions in matter,” http://www.srim.org

The amount of energy per unit length “used” to directly 
ionize the material is called linear energy transfer (LET)

➢𝐿𝐸𝑇 ≅ −
1

𝜌

d𝐸

d𝑥
 

MeV

Τmg cm2

direct ionization

energy of incident particle
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heavier particles 
have larger LET

heavier particles 
have shorter ranges

Calculated as electrical stopping power from SRIM tables:
J.F. Ziegler and J.P. Biersack, “Stopping and range of ions in matter,” http://www.srim.org

Calculated from electrical stopping power from SRIM tables:
J.F. Ziegler and J.P. Biersack, “Stopping and range of ions in matter,” http://www.srim.org
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Figure: J.L. Autran, D. Munteanu, “Soft Errors, from Particles to Circuits”, 
Available at: http://www.fas.org/sgp/othergov/doe/lanl/lib-www/la-pubs/00326407.pdf) 

For indirect ionizing interactions, we need to know the probability of an interaction event occurring. 

Different reactions have different probabilities (cross sections)

Data from: https://www.nndc.bnl.gov/endf/ 
Database ENDF/B-VIII.0 

https://www.nndc.bnl.gov/endf/
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𝑒ℎ𝑆𝑖 =
׬
0

𝐿
𝜌𝑆𝑖 × 𝐿𝐸𝑇 𝐸  𝑥

3.6  V

sensitive volume An upset is triggered if enough 
charge (critical charge) is 
deposited in the sensitive volume.

energy needed to create an
e-h pair in Si 𝐸𝑒ℎ S ≅ 3.6  V

𝐸𝑒ℎ S  2 ≅ 18  V
𝐸𝑒ℎ G ≅ 2.9  V
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SEE are stochastic in nature
• a particle may or may not produce an error

SEE cross-section (σ) measures the 
probability for an SEE to occur

𝜎[cm2] =
  m     f       

f    c  [ Τ     c   cm2]
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example: SRAM in 28nm CMOS technology

G. Borghello, et al., Single Event Effects characterization of a commercial 28 nm CMOS technology, TWEPP 2023

Weibull fit:

𝜎 = 𝝈∞ 1 − 𝑒−
𝐿𝐸𝑇 − 𝑳𝑬𝑻𝟎

𝑾𝝈

𝒔

minimum LET needed 
to have an event

maximum cross-section



introduction on radiation effects in electronics and detectors
8th EIROforum School on Instrumentation

2024/05/14 giulio.borghello@cern.ch | CERN EP-ESE-ME 33

10Bn

7Li

α

γ

 th   
10B  → 4H 1.47 M V  7  0.84 M V  γ (0.48 M V)

thermal neutron

thermal neutrons cross section

𝜎𝑇ℎ𝑁
𝑆𝐸𝐸 𝐸 ~1/√𝐸

fast neutrons cross section
w       f  
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failure of DCDC converters in the CMS pixel system during the 2017 run!

caused by TID-
induced increase in 
leakage current of 
MOS transistors!

https://indico.desy.de/event/21211/contributions/42055/attachments/26775/33802/KatjaKlein_12thDetectorWorkshop_14032019.pdf
https://espace.cern.ch/project-DCDC-new/Shared%20Documents/SummaryMeasurements18.pdf
https://espace.cern.ch/project-DCDC-new/Shared%20Documents/Report_IRRAD_tests.pdf
https://indico.cern.ch/event/788031/attachments/1794169/2923948/ESE_seminar_Feb19_talk.pdf 

https://indico.desy.de/event/21211/contributions/42055/attachments/26775/33802/KatjaKlein_12thDetectorWorkshop_14032019.pdf
https://espace.cern.ch/project-DCDC-new/Shared%20Documents/SummaryMeasurements18.pdf
https://espace.cern.ch/project-DCDC-new/Shared%20Documents/Report_IRRAD_tests.pdf
https://indico.cern.ch/event/788031/attachments/1794169/2923948/ESE_seminar_Feb19_talk.pdf
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TID effects 
≈

accumulation of charge in the oxides of an electronic device
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example: charge build-up in the 
gate oxide of a MOS transistor

+++ +++++ ++- -- - - - -

gate oxide

charge accumulated in 
the gate oxide!

particle

yet another particle

another particle

IDS

VGVTH

IOFF

ION

 

 

 

G

D SIDSIDS

G
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SiO2

Si

+

+

+

H

H

H

H

H

±

-

strained Si-Si bond
(Oxygen vacancy)

hole trapping
(radiation 

generated)

O instead of Si missing O

dangling bonds
(ready to react with other particles)

charge trapped in oxide

charge trapped at the interface

defects in the SiO2 and/or in 
SiO2/Si interface can trap charge
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Unit of measure:
• gray (1 Gy = 1 J/Kg; standard unit) 
• rad (radiation absorbed dose; 1 erg/g)
 
100 rad = 1 Gy = 1 J/Kg
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particle accelerators are a very 
challenging environment!

1 Grad !
(in 10 years)

(detectors)
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data from:
https://www.tsmc.com/engli sh/dedicat edFoundry/t echnology/logic /l_3nm
https://irds.ieee.org/editions/2022/more-moore

CERN & CMOS
(detectors)

technology scaling
(i.e., smaller transistors)

+ density

TID hardness (?)

+ speed

- power consumption
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thin oxides are more rad-hard!!

Saks, N. S., et al. IEEE Trans. on Nucl. Sci. 31.6 (1984): 1249-1255.

decreasing technology node

in
cr

ea
si

n
g 

ra
d

ia
ti

o
n

 h
ar

d
n

es
s

tox = thickness of 
the gate oxide

tox in 65nm node ≈ 2 nm

MOSFETs in 65nm CMOS technology 
should be extremely rad hard!
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total current collapse at 
high TID!
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Shallow Trench Isolation (STI): 
useful to isolate adjacent devices

Spacers: needed to create the 
Lightly Doped Source/Drain 
(LDD) extensions
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TID effects in modern CMOS technologies are dominated by 
charge trapped in auxiliary thick oxides like STI and spacers!
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STI-related effects

1. radiation-induced drain-to-
source leakage current

2. radiation-induced narrow 
channel effect (RINCE)

3. halo-enhanced robustness in 
short channels

1. T. R. Oldham, et. al., "Post-Irradiation Effects in Field-Oxide Isolation Structures," in IEEE Transactions on Nuclear Science, vol. 34, no. 6, pp. 1184-1189, Dec. 1987.
2. M. R. Shaneyfelt et. al, "Challenges in hardening technologies using shallow-trench isolation," in IEEE Transactions on Nuclear Science, vol. 45, no. 6, pp. 2584-2592, Dec. 1998. 
3. A. H. Johnston, et. al, "Total Dose Effects in CMOS Trench Isolation Regions," in IEEE Transactions on Nuclear Science, vol. 56, no. 4, pp. 1941-1949, Aug. 2009. 
4. Nadia Rezzak, et. al, “The sensitivity of radiation-induced leakage to STI topology and sidewall doping”, Microelectronics Reliability, Volume 51, Issue 5, 2011, Pages 889-894.
5. C. -M. Zhang et al., "Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs," in IEEE Transactions on Nuclear Science, vol. 66, no. 1, pp. 38-47, Jan. 2019
6. Faccio, Federico, and Giovanni Cervelli. "Radiation-induced edge effects in deep submicron CMOS transistors." IEEE Transactions on Nuclear Science 52.6 (2005): 2413-2420.
7. Gaillardin, M., et al. "Enhanced Radiation-Induced Narrow Channel Effects in Commercial ${\hbox {0.18}}~\mu $ m Bulk Technology." IEEE Transactions on Nuclear Science 58.6 (2011): 2807-2815.
8. Faccio, F., et al. "Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm MOSFETs." IEEE Transactions on Nuclear Science 62.6 (2015): 2933-2940.
9. Bonaldo, S., et al. "Influence of halo implantations on the total ionizing dose response of 28-nm pMOSFETs irradiated to ultrahigh doses." IEEE Transactions on Nuclear Science 66.1 (2018): 82-90.
10. Bonaldo, S., et al. "Ionizing-radiation response and low-frequency noise of 28-nm MOSFETs at ultrahigh doses." IEEE Transactions on Nuclear Science 67.7 (2020): 1302-1311.
11. F. Faccio, et. L,, "Radiation-Induced Short Channel (RISCE) and Narrow Channel (RINCE) Effects in 65 and 130 nm MOSFETs," in IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 2933-2940, Dec. 2015
12. F. Faccio et al., "Influence of LDD Spacers and H+ Transport on the Total-Ionizing-Dose Response of 65-nm MOSFETs Irradiated to Ultrahigh Doses," in IEEE Transactions on Nuclear Science, vol. 65, no. 1, pp. 164-174, Jan. 2018
13. S. Bonaldo et al., "Charge Buildup and Spatial Distribution of Interface Traps in 65-nm pMOSFETs Irradiated to Ultrahigh Doses," in IEEE Transactions on Nuclear Science, vol. 66, no. 7, pp. 1574-1583, July 2019

spacers-related effects

1. radiation-induced short channel 
effect (RISCE)



introduction on radiation effects in electronics and detectors
8th EIROforum School on Instrumentation

2024/05/14 giulio.borghello@cern.ch | CERN EP-ESE-ME 48

STI-related effects

1. radiation-induced drain-to-
source leakage current

2. radiation-induced narrow 
channel effect (RINCE)

3. halo-enhanced robustness in 
short channels

1. T. R. Oldham, et. al., "Post-Irradiation Effects in Field-Oxide Isolation Structures," in IEEE Transactions on Nuclear Science, vol. 34, no. 6, pp. 1184-1189, Dec. 1987.
2. M. R. Shaneyfelt et. al, "Challenges in hardening technologies using shallow-trench isolation," in IEEE Transactions on Nuclear Science, vol. 45, no. 6, pp. 2584-2592, Dec. 1998. 
3. A. H. Johnston, et. al, "Total Dose Effects in CMOS Trench Isolation Regions," in IEEE Transactions on Nuclear Science, vol. 56, no. 4, pp. 1941-1949, Aug. 2009. 
4. Nadia Rezzak, et. al, “The sensitivity of radiation-induced leakage to STI topology and sidewall doping”, Microelectronics Reliability, Volume 51, Issue 5, 2011, Pages 889-894.
5. C. -M. Zhang et al., "Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs," in IEEE Transactions on Nuclear Science, vol. 66, no. 1, pp. 38-47, Jan. 2019
6. Faccio, Federico, and Giovanni Cervelli. "Radiation-induced edge effects in deep submicron CMOS transistors." IEEE Transactions on Nuclear Science 52.6 (2005): 2413-2420.
7. Gaillardin, M., et al. "Enhanced Radiation-Induced Narrow Channel Effects in Commercial ${\hbox {0.18}}~\mu $ m Bulk Technology." IEEE Transactions on Nuclear Science 58.6 (2011): 2807-2815.
8. Faccio, F., et al. "Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm MOSFETs." IEEE Transactions on Nuclear Science 62.6 (2015): 2933-2940.
9. Bonaldo, S., et al. "Influence of halo implantations on the total ionizing dose response of 28-nm pMOSFETs irradiated to ultrahigh doses." IEEE Transactions on Nuclear Science 66.1 (2018): 82-90.
10. Bonaldo, S., et al. "Ionizing-radiation response and low-frequency noise of 28-nm MOSFETs at ultrahigh doses." IEEE Transactions on Nuclear Science 67.7 (2020): 1302-1311.
11. F. Faccio, et. L,, "Radiation-Induced Short Channel (RISCE) and Narrow Channel (RINCE) Effects in 65 and 130 nm MOSFETs," in IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 2933-2940, Dec. 2015
12. F. Faccio et al., "Influence of LDD Spacers and H+ Transport on the Total-Ionizing-Dose Response of 65-nm MOSFETs Irradiated to Ultrahigh Doses," in IEEE Transactions on Nuclear Science, vol. 65, no. 1, pp. 164-174, Jan. 2018
13. S. Bonaldo et al., "Charge Buildup and Spatial Distribution of Interface Traps in 65-nm pMOSFETs Irradiated to Ultrahigh Doses," in IEEE Transactions on Nuclear Science, vol. 66, no. 7, pp. 1574-1583, July 2019

spacers-related effects

1. radiation-induced short channel 
effect (RISCE)
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even at “low” doses!
1 Mrad = 10 kGy

~4 orders of 
magnitude!!!

TID

leakage current: 𝐼𝑂𝐹𝐹 = 𝐼𝐷𝑆(𝑉𝐺𝑆 = 0 𝑉,𝑉𝐷𝑆 = 𝑉𝐷𝐷)

(e.g., static power consumption of a CMOS inverter: 𝑃𝑆 = 𝑉𝐷𝐷 × 𝐼𝑂𝐹𝐹)
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Future Circular Collider (FCChh)
https://home.cern/science/accelerators/future-circular-collider

10-500 Grad!!!*

*https://indico.cern.ch/event/656491/contributions/2915679/attachments/1629768/2601671/20180412_INFANTINO_ST_R2E_overview.pdf
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physical mechanisms of DD-induced degradation

incident energetic particle

missing atom = vacancy

atom in the wrong position = interstitial

[1] J. R. Srour, C. J. Marshall and P. W. Marshall, "Review of displacement damage effects in silicon devices," in IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 653-670, June 2003, doi: 10.1109/TNS.2003.813197.
[2] Oldham, Timothy R. "Basic mechanisms of TID and DDD response in MOS and bipolar microelectronics." NSREC Short Course (2011).
[3] J. R. Srour and J. W. Palko, "Displacement Damage Effects in Irradiated Semiconductor Devices," in IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 1740-1766, June 2013, doi: 10.1109/TNS.2013.2261316.

The disturbance in the crystal lattice periodicity has associated discrete energy levels in the forbidden 
energy band-gap. These influence generation-recombination processes in the material.

recoil 
atom

Si crystal
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DD is problematic mainly for:

• Bipolar transistors
o Barnaby, Hugh J., et al. "Displacement damage in bipolar junction transistors: Beyond Messenger-Spratt." IEEE Transactions on Nuclear Science 64.1 (2016): 149-155
o Rax, B. G., A. H. Johnston, and T. Miyahira. "Displacement damage in bipolar linear integrated circuits." IEEE Transactions on Nuclear Science 46.6 (1999): 1660-1665.

• Particle detectors/image sensors/diodes
o Moll, Michael. "Displacement damage in silicon detectors for high energy physics." IEEE Transactions on Nuclear Science 65.8 (2018): 1561-1582.

➢ MOS transistors are typically immune to DD
‼ Except for power MOSFETs
o Faccio, Federico, et al. "TID and displacement damage effects in vertical and lateral power MOSFETs for integrated DC -DC converters." 2009 RADECs. IEEE, 2009.
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EXTRA
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https://www.youtube.com/watch?v=bhBf5crp0i8&ab_channel=UncommentatedPannen
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https://cds.cern.ch/record/2773266/files/10.23731_CYRM-2021-001.35.pdf
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single- and multi-bit-upsets
(SBU, MBU)

BIT-UPSET = change in the value of a 
bit caused by a particle

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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non-destructive

• Single/Multi Event Upset

• Single Event Transient

• etc… 

destructive

Single Event Effects 

• Single Event Latch-Up
        (potentially destructive)

• Single Event Burn-out

• Single Event Gate Rupture

• etc… 

ON/OFF power cycling
or replacement if destructive
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if RSUB high enough, VB2 can 
increase well above GND

for this current to flow, VB1 must 
fall below VD (diode in forward)

VBE1 < 0 IE1 

VBE2 > 0 IE2 

IC2 

VB1 

VB2 

IE1 

IE2 IC1 

𝐼𝐸 = 𝐼𝑆 𝑒
±𝑉𝐵𝐸
𝑉𝑡ℎ − 1

𝐼𝐶 = 𝛼𝐹𝐼𝐸
𝐼𝐵 = 1 − 𝛼𝐹 𝐼𝐸
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R. D. Evans. The atomic nucleus. McGraw-Hill New York, 1955.
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BIT-UPSET = change in the value of a bit caused by a particle

0 0 0 0 0 0

0 0 1 0 0 0
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0
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0 0 0 0 0 0

Single-bit-upset (SBU) Multi-bit-upset (MBU)
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TRIPLICATION
(widely used to prevent SEU) 
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G. Borghello, et al., Single Event Effects characterization of a commercial 28 nm CMOS technology, TWEPP 2023  
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physical distance among triplicated 
cells reduces the risk of MBU!
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TRIPLICATION
(widely used to prevent SEU) 
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15 μm typically used 
in 65nm technology

Stefan Biereigel: Investigations on Multi-Bit Upsets in 65nm CMOS (https://indico.cern.ch/event/959655)

most likely 15 μm is an overestimation (see https://indico.cern.ch/event/959655). 

Recent measurements in 28nm showed that ~6um are enough to prevent MBU
(G. Borghello, et al., Single Event Effects characterization of a commercial 28 nm CMOS technology, TWEPP 2023).

https://indico.cern.ch/event/959655
https://indico.cern.ch/event/959655
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V. Ferlet-Cavrois, L. W. Massengill and P. Gouker, "Single Event Transients 
in Digital CMOS—A Review," in IEEE Transactions on Nuclear Science, vol. 
60, no. 3, pp. 1767-1790, June 2013, doi: 10.1109/TNS.2013.2255624.

0
Vin

1
V0 V1 V8

0 1

wrong value!

pulse length

0 1 0

single-event transient
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data latch at clock falling edge

not latched latched!

OUT

DATA

CLK

error!

SET

CLK

OUT

DATA = 0
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https://indico.cern.ch/event/1038992/contributions/4363708/attachments/2256379/3829070/LHCC_RD53_June2021.pdf

RD53*: triplicated clock tree with skew for SET filtering

*readout chips for the ATLAS and CMS pixel detector (https://rd53.web.cern.ch/)
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OUT (Q)

DATA

CLK

CLK + ΔT

CLK + 2ΔT

This hardening techniques 
requires the knowledge of 
the SET pulse length!

typical pulse length ~100ps
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MOS (Metal-Oxide-Semiconductor) 
transistors are the building blocks 
of any complex integrated circuit!

MOS transistors

complex circuit

a lot of 
work
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-- ----- - - --- ----- - - - -- ----- - - - -- ----- - - - -- ----- - - -

VG > VTH

MOS transistors behaves (ideally) like switches 
controlled by voltage applied to the gate terminal

If a drain-source voltage (VDS) 
is applied, a source-drain 
current starts to flow
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11.9 mm

25.2 mm

example:
MPA (Macro Pixel ASIC)
For CMS outer tracker:

~1.5M of MOS transistors

Courtesy of Davide Ceresa, CERN (EP-ESE-ME 
section)

Billions of transistors 

for each experiment!

https://espace.cern.ch/CMS-MPA/SitePages/Home.aspx
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Schematic view of thousands of 
transistors interconnected by metal lines 
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example of a real MOS device

S. E. Thompson et al., "A logic nanotechnology featuring strained-silicon," 
in IEEE Electron Device Letters, vol. 25, no. 4, pp. 191-193, April 2004

to fit millions of transistors in a chip, MOS must be small!
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CMOS technology node
identified with the minimum feature size available* 
(e.g., 28nm technology node -> minimum feature size ~28nm)

*The name of recent technology nodes (e.g., 22 nm, 16 nm, etc..) refer purely to a specific generation of chips made in a particular technology. It does not correspond to any feature size. Nevertheless, the name convention 
has stuck (https://en.wikichip.org/wiki/technology_node).

technology scaling
to reduce the minimum size of MOS transistors, several 
innovation/changes are introduced in the fabrication process
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𝐼𝐷 ∝
𝑊

𝐿

gate

drain source

𝑊  (width)

𝐿
(length)
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TID-induced positive charge in the oxide
we are only interested in the charge that faces the channel

oxide

“voltage”

-- -- - - -- - -

it’s a transistor!

-- ----- - - -

parasitic 
channel!

positive charge attracts electrons ->problem only in nMOS!

silicon
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no leakage!!!

STANDARD ELT

MOSFET TOP VIEW

the STI faces the channel

pre-radthe STI does not face 
the channel!
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radiation-induced variability

Termo, G., Borghello, G., Faccio, F., Michelis, S., Koukab, A., & Sallese, J. M. (2023). “Fab -to-fab and run-to-run variability in 
130 nm and 65 nm CMOS technologies exposed to ultra-high TID”. Journal of Instrumentation, 18(01), C01061.

TID effects are affected by:

• technology-to-technology variability

• manufacturer-to-manufacturer variability

• fab-to-fab variability

• chip-to-chip variability

• lot-to-lot variability

• transistor-to-transistor variability
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10 MGy = 1 Grad!

Sophisticated electronics near 
the interaction point ->
very high radiation levels!!

B. Schmidt. “The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator 
and the Experiments.” In: Journal of Physics: Conference Series 706.2 (2016), p. 022002. url: 
http://stacks.iop.org/1742-6596/706/i=2/a=022002

CMS
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CMS Pixel-Strip (PS) module
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why aren't we testing smaller technologies?
many reasons but mainly…

Chip Design and Manufacturing Cost under Different Process Nodes. According to the survey from the International Business Strategy Corporation (IBS), 
the increase of design cost for each generation technology has exceeded 50% after 22 nm process, including EDA, design verifi cation, IP core, tape-out, and so forth.
https://www.extremetech.com/computing/272096-3nm-process-node

ASICs development cost
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+

[1] J. R. Srour, C. J. Marshall and P. W. Marshall, "Review of displacement damage effects in silicon devices," in IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 653-670, June 2003, doi: 10.1109/TNS.2003.813197.
[2] Oldham, Timothy R. "Basic mechanisms of TID and DDD response in MOS and bipolar microelectronics." NSREC Short Course (2011).
[3] J. R. Srour and J. W. Palko, "Displacement Damage Effects in Irradiated Semiconductor Devices," in IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 1740-1766, June 2013, doi: 10.1109/TNS.2013.2261316.
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(carrier removal)
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physical mechanisms of DD-induced degradation



introduction on radiation effects in electronics and detectors
8th EIROforum School on Instrumentation

2024/05/14 giulio.borghello@cern.ch | CERN EP-ESE-ME 90

NIEL scaling (hypothesis):

damage effects on devices only depend on NIEL 
and not on the type/energy of the particle
i.e., different particles with the same NIEL 
should produce the same macroscopic effect

Normalization of radiation fields to

1 MeV neutron equivalent damage (neq)

Φ𝑒𝑞 = 𝜅𝑥 Φ𝑥

Displacement Damage in Silicon https://rd50.web.cern.ch/NIEL/

 

Moll, Michael. "Displacement damage in silicon detectors for high energy physics." IEEE Transactions on Nuclear Science 65.8 (2018): 1561-1582
A. Vasilescu and G. Lindstroem, Displacement damage in Silicon, on-line compilation: http://sesam.desy.de~/gunnar/Si-dfuncs

Non-ionizing energy loss (NIEL) and damage factor

NIEL [MeV/(mg/cm2)] is the amount of energy “used” to displace atoms

𝐷 𝐸 = 𝑁𝐼𝐸𝐿 × 𝐴/𝑁𝐴
A: molar mass, NA Avogadro’s number

https://rd50.web.cern.ch/NIEL/
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• Macroscopic bulk effects
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Moll, Michael. "Displacement damage in silicon detectors for high energy physics." IEEE Transactions on Nuclear Science 65.8 (2018): 1561-1582.
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