

The JUICE Spacecraft and its Instrumentation, Overviews ans Challenges

Fabrice Cipriani, Thibaut Prod'homme

With contributions from : Petteri Nieminen, Marco Vuolo, Giovanni Santin, Mika Holmberg, Grégoire Déprez, Olivier Witasse

14/05/2024

ESA UNCLASSIFIED - For ESA Official Use Only

- I. Space Environment engineering : Challenges to spacecraft, impact on the design
- II. Overview of the Jupiter radiation and plasma environments and of the JUICE mission
- III. JUICE design for radiation and plasma related effects mitigation (platform and instruments)
- IV. Conclusion and Some Take aways

Space Environment and Effects

30 January 2019

ECSS-E-ST-10-04C Rev.1 DIR1

- Defines what **Space Environments** will the System be exposed to ?
- \rightarrow Gravity
- \rightarrow Electro-Magnetic radiation
- → Atmospheres : Mesosphere, Thermosphere, Exosphere
- → Plasmas : Ionosphere, Magnetospheres, interplanetary space, CMEs... etc..
- → Radiation : Radiation Belts (Earth, Jupiter), SEPs, GCRs ..
- \rightarrow Micrometeorites and Debris
- → Planetary surfaces : regolith, dust

- Defines which detrimental *Effects* such environments might produce on Systems and Sub-systems
- → Orbit control / trajectories / operations
- \rightarrow Thermal, Power budgets
- \rightarrow Surface materials erosion
- \rightarrow Surface Charging, ESDs
- \rightarrow Deep charging, SEE, SEU, DD
- Impacts (materials structural / performative and the Public Review are only the modified parts of the document degradation..)
- \rightarrow Landings, contamination
- \rightarrow ...

Space engineering

Space environment

This draft is distributed to the ECSS community for Public Review. (Duration: 8 weeks)

Jupiter System Archetype for gas giants and potential habitats

SA UNCLASSIFIED – For Internal Use

Past and future missions to Jupiter

Pioneer 10 & 11 flybys (1973, 1974)

Voyager 1 & 2 fly-bys (1979)

(2016)

Europa Clipper

Ulysses high-inclination manoeuvre (1992)

Cassini fly-by (2000)

European Space Agency

New Horizons fly-by (2007)

NASA Galileo Orbiter 1995-2003

ESA UNCLASSIFIED – For Internal Use

Plasma torus and the radiation belts

JAXA Sprint-A, launched 14.9 2013

1400 MHz

Plasma torus and radiation belts wobble due to 7° tilt between Jupiter rotational and magnetic axes. Jupiter rotational period 9 h 56 min

Interplanetary environment Solar and Jovian electrons

Taylor, 2011

Intermediate energies 0.2-10 MeV

Less damage than protons / ions

Effects: TID after thin shielding, charging, signal noise / contamination

Jupiter radiation belt: primary source of energetic electrons in Heliosphere at solar quiet time

1977

1978

- Accelerated to 10s or 100s MeV
- Leak out of Jovian magnetosphere
- Diffuse in the Heliosphere along magnetic field

Subscribe

G. Santin, P. Truscott, R. Gaillard, R. Garcia Alia, "Radiation environments: space, avionics, ground and below", RADECS 2017 Short Course Notes

Touring Jupiter isn't a cakewalk

NASA Galileo explored Jupiter between 1995 and 2003

NASA JUNO

Voyager 2

The spacecraft was designed to survive 150krad : it endured 600krad behind 2.2g/cm2

- Detector noise
- Power glitches
- Leakage currents
- Internal ESD noise
- Cerenkov Florescence radiation on optical elements
- Scillators frequency shifts

In mid 1979, Voyager 2 visits the Jovian magnetosphere and its trajectory approached Ganymede, experienced many sporadic events (strong electrostatic charging).

JUICE development timeline

Mission timeline

Juice – the spacecraft

• esa

Launch mass ≈ 6.1 ton
Spacecraft dry = 2450 kg
Propellant tank capability = 3650 kg
Solar Array ≈ 790 W EOL
Memory = 1.25 Tbit EOL
Data Rate > 1.4 Gb/24 h
Communication roundtrip ≈ 90 min

Radiation environment predictions

→ THE EUROPEAN SPACE AGENCY

Electrons at Jupiter

Trapped radiation at Jupiter: intense, energetic (>100 MeV) and highly penetrating electron component

Cherng et al (1996) identified **high-Z** materials as optimal shielding for TID against electrons (MCNPX, NOVICE)

Ansart et al (2012): (Geant4) max dose reduction factor ~2

Mission design: for given TID, mass saving factor ~1.5

- E.g. 3.24 g/cm2 (Al) ~ 2.16 g/cm2 (Ta),
 - or 1.22 g/cm2 (Al) ~ 0.81 g/cm2 (Ta)

Note: layered shielding may be better against transients

M.Cherng, I.Jun, and T.M.Jordan, IEEE TNS Vol 43, No 6, 1996 M. Ansart et al., RADECS 2012 Conference Proceedings, 2012

20

Geometry models

JUICE - IMU Geometry

Sphere: 1mm Pb+4mm Al + Si det (0.5 mm r)

TEST Spacecraft for sharing info

🖣 🔜 📲 📲 💶 🖛 🕂 📲 🔚 📲 🔚 📲 🔚 🚛 🚱 🛌 🕼 🛃 📰 🖛 🕼

JUICE Instrument radiation models (GDML – GEANT4 - FASTRAD)

Testing campaigns – e.g. materials, deep charging

Side view

Irradiation of electrical connector materials at low temperatures

Materials Testing campaigns (charging at low temperature under electron irradiation)

Back view

Front view

23

Protection measures against radiation ...

- Extensive radiation analysis campaigns on platform and payloads \geq
- Two radiation shielding vaults which are built along the central \succ cylinder, to protect sensitive electronics \rightarrow around 150kg
- 2300kg, 250kg payload including shielding \geq
- Extra thick Solar Arrays protective glass ~ + 30kg \geq

1.0E+0

1.0E+0

💻 🔜 📲 🚍 💳 🕂 📲 🧮 📰 📲 🔚 📲 🚍 🚛 🚳 🍉 📲 🚼 🖬 🔤 📾 🕮 🏜 🗰

Plasma environment and charging (SPIS modelling)

PEP JENI Energetic Neutral Atoms (ENA) simulation

Extensive Simulations campaigns

JUICE protection measures against plasma and charging

Conductive MLI, HGA and radiator white paints

Solar arrays optimization with ITO coating on solar cells (85m²), strings organization and carbon fiber structure (backside)

Summary

- → JUICE development timeline has been quite short, about 7 years from SRR to launch. This was however preceded by *quite extensive preliminary studies* (incl. radiation and plasma during the study phase).
- → The current status is very satisfactory, en route to Jupiter, science data incoming mostly nominally
- \rightarrow Radiation and Plasma protections (together with EMC) have been the main drivers
- → Significant modelling assessments already during early phases (Phase 0/A)
- → Shielding Mass optimization started before PDR (choice of materials) and was finalised before CDR
- → 10 Instruments, all designs were assessed against radiation already at PDR, radiation testing campaigns were performed until I-CDR
- \rightarrow Environment modelling and testing have been crucial ...
- → RADEM is returning nice data !

Date	Event or phase
April 2023	Launch from Kourou with Ariane 5
August 2024	Earth flyby #1
August 2025	Venus flyby
September 2026	Earth flyby #2
January 2029	Earth flyby #3
July 2031	Jupiter orbit insertion
July 2031- June 2032	Energy reduction phase
July 2032	2 Europa flybys
August 2032-August 2033	Jupiter inclined phase - Callisto flybys
November 2033-November 2034	Phase "transfer to Ganymede"
December 2034	Ganymede orbit insertion
September 2035	End of mission