

Experimental stations for synchrotron radiation beamlines

François Villar - ISDD Mechanical engineering group

8th EIROforum School on Instrumentation - May 14, 2024 - ESO/EUROfusion Garching

OUTLINE

- Introduction
- Challenges
- Some solutions
- Focus on guiding error correction
- Typical results

WHAT ARE WE TALKING ABOUT ?

ID24 Experimental cabin

WHAT IS IT MADE FOR ? A FEW EXAMPLES

Study of neurons in fruit fly leg

Kuan, A.T., Phelps, J.S., Thomas, L.A. et al. Nat Neurosci 23, 1637–1643 (2020)

Study of the degradation of paintings

Study of carbonates in meteorite

NASA picture

Monico et al, Science Advances, 2020

HOW DO YOU DO THAT ?

X-ray Fluorescence Microscopy (2D)

WHAT DOES IT LOOKS LIKE ?

Tomography

2D Scanning

Focus spot size <30nm

2D scanning : step size of 50nm over a 50µm x 50µm zone

Focus spot ~100nm

Laser shock to achieve High pressure (few Mbar) High temperature (few 1000K)

Vacuum (10⁻⁷ mbar) Cryogenic condition (sample ~110K)

EXPERIMENTAL STATION

Between the KB and the sample:

- videomicroscope
- I0 diode
- Pinholes.

(+ stages)

Between the KB and the sample:

- videomicroscope
- I0 diode
- Pinholes.
- (+ stages)
- Sample stage fine + coarse
- 2 x KB mechanic + stage
- Cooling system (~100K) : radiation damage
- Vacuum enclosure (10⁻⁷ mbar)

Between the KB and the sample:

- videomicroscope
- I0 diode
- Pinholes.
- (+ stages)
- Sample stage fine + coarse
- 2 x KB mechanic + stage
- Cooling system (~100K) : radiation damage
- Vacuum enclosure (10⁻⁷ mbar)

→ SEVERE SPACE CONSTRAINTS ←

→ STABILITY REQUIREMENTS : 20 to 50nm KB / sample ←

SPACE CONSTRAINTS

X-ray optic (KB) Videomicroscope Pinhole and diode Cryo loop

Sample

CRYO COOLING SYSTEM

VIDEOMICROSCOPE

Folding mirror

Sample

Long working distance Drilled optic

field of view ~mm resolution ~ μ m

THERMAL DESIGN : SYMMETRY

Page 14 8th EIROforum School on Instrumentation - May 14, 2024 - F. Villar

THERMAL DESIGN AND STIFFNESS

Material used

Aluminum alloy mainly

- (High thermal conductivity, light, machinability)
- \rightarrow Limitation of thermal gradients
- \rightarrow Transient period shorter

High thermal expansion is managed by symmetry

Invar where a symmetric geometry is impractical

Closed frames Less sensitive to thermal bending Stiffer than open ones

00

SPECIFIC METROLOGY FRAME

Separation of the metrology frame from the structural frame

Limits the effect of the perturbations acting on the structural frame (thermal deformation, parasitic forces...)

The European Synchrotron ESRF

ID16A TOMOGRAPHY

ID16A TOMOGRAPHY

REAL-TIME HEXAPOD CONTROL

ROTATION STAGE ERROR COMPENSATION

0 0

ROTATION STAGE ERROR COMPENSATION

Tz error with compensation

ROTATION STAGE ERROR COMPENSATION

Tz error with compensation 17.190 17.180 10nm 17.180 17.170 10nm 17.160 17.160 180 360angular position (°)

ID21 FIRST RESULTS

X-Ray fluorescence maps of potassium distribution in cells

2 maps of about 40µm x 20µm 5 hours apart

100nm step size

A. Carmona, R. Ortega et al. Chemical Imaging and Speciation - LP2i – UMR5797 – CNRS - University of Bordeaux Aiyarin Kittilukkana and Chalermchai Pilapong Department of Radiologic Technology, Faculty of Associated Medical Science, Chiang Mai University, Thailand

PERFORMANCES OBTAINED AT ID16A

10µm x 10µm Step size 10nm (April 2024)

Focus size: 25 x 19 nm (April 2016)

- Experimental stations can be very diverse
- No space available : creativity and compromise
- Precision achieved 10 to 100nm for some stations

THANK YOU !

ID21 beamline team Hiram Castillo Michel, Murielle Salomé, Marine Cotte, Gaëtan Goulet

ID16A beamline team Peter Cloetens, Alexandra Joita-Pacureanu, Lionel André Murielle Salomé,

<u>ISDD</u>

Delphine Baboulin Philipp Brumund, Bob Baker, Philippe Tardieu, Bertrand Pelissier, Olivier Hignette, Daniel Fiole Cedric Cohen, Eric Matthieu Ricardo Hino, Cyril Guilloud Jens Meyer, Ludovic Ducotté Thomas Dehaeze

<u>ExpD</u>

David Bugnazet, Yves Watier, Peter van der Linden,

Experimental cabin ID32

PERSPECTIVES

The ID16A station was designed for step by step scan, it is a "slow" machine

FFT of the fluorescence signal spectrum (horizontal direction)

Taking advantage of the increased flux of EBS and improving the performance in terms of precision and **speed** (for continuous scan)

require to take into account perturbations during the design phase

- ground floor vibration,
- sensor noise,
- Pump vibrations ...

\rightarrow Dynamic error budgeting tool \leftarrow

Real-time control system is also imperative

X-ray Fluorescence Microscopy (2D)

Imaging

3D scan, tomography

2D scan, resolution 10nm to 100nm

2D scan of a **sample** placed in the **X-ray** beam (focal spot size 10 to 100nm)

the elemental composition is determined by fluorescence **detectors**

8th EROforum School on Instrumentation - May 14, 2024 - F. Villar

Page 28

X-ray absorption spectroscopy

LASER compression

High T ~5000 K High P ~400 GPa

SPACE CONSTRAINTS

→ space is needed to build stiff and stable support for the sample ←

As a consequence, the KB will be **suspended upside down** : need a frame that surrounds the sample stages

