The assumptions behind Machine Learning

... and how they affect your results

Danilo Ferreira de Lima European XFEL

danilo.enoque.ferreira.de.lima@xfel.eu

April 2024

The path ahead

- Focus on the assumptions in Machine Learning.
- By choosing assumptions carefully, we can be sure the method works under the conditions we expect.
- These assumptions are closely related to the uncertainties we will estimate.

What is Machine Learning?

What we do not want:

(From XKCD)

- Machine Learning requires understanding of the math behind it.
- If you cannot understand it, I would not trust it!
- The mathematical concepts are very simple, but carry many assumptions!
- Be careful: data does not care about your assumptions.

A bit of history ...

Decade 🕈	Summary ¢
<1950s	Statistical methods are discovered and refined.
1950s	Pioneering machine learning research is conducted using simple algorithms.
1960s	Bayesian methods are introduced for probabilistic inference in machine learning. ^[1]
1970s	'Al Winter' caused by pessimism about machine learning effectiveness.
1980s	Rediscovery of backpropagation causes a resurgence in machine learning research.
1990s	Work on Machine learning shifts from a knowledge-driven approach to a data-driven approach. Scientists begin creating programs for computers to analyze large amounts of data and draw conclusions – or "learn" – from the results. ^[2] Support-vector machines (SVMs) and recurrent neural networks (RNNs) become popular. ^[3] The fields of computational complexity via neural networks and super-Turing computation started. ^[4]
2000s	Support-Vector Clustering ^[5] and other kernel methods ^[6] and unsupervised machine learning methods become widespread. ^[7]
2010s	Deep learning becomes feasible, which leads to machine learning becoming integral to many widely used software services and applications.

All methods rely on strong theorems on the underlying statistics of the data.

Bayes Theorem: reinterpreting probabilities

P(hypothesis|data) P(data) = P(data|hypothesis) P(hypothesis) posterior likelihood prior

- So far: probabilities \rightarrow experiment can be repeated *in the same way*.
- What is the probability that the Earth is destroyed?
- The Bayesian view of probability: the degree of *belief* that an event will happen.
 - Make a prior assumption about the event;
 - Calculate the likelihood it will happen based on data;
 - Extract the posterior information with an updated degree of belief.
 - P(data) is the probability this data happens considering all hypotheses. It is often taken as a normalization term.

How does this help?!

- Past data D → features x_i and y_i.
 Given a new x', what is y'?
- Assume $y = f_{\theta}(\mathbf{x}) + \epsilon$.

ϵ is zero-mean Gaussian noise.
 Example: *y* = *f*(*x*) = β*x* + α + *ϵ*.
 In this example, θ = (α, β).

Fitting a line with Bayes Theorem

As more data is added: update the posterior with more knowledge.

Fitting a line with Bayes Theorem

As more data is added: update the posterior with more knowledge.

Fitting a line with Bayes Theorem

As more data is added: update the posterior with more knowledge.

Data points: 2

9

Fitting a line with Bayes Theorem

As more data is added: update the posterior with more knowledge.

Fitting a line with Bayes Theorem

As more data is added: update the posterior with more knowledge.

Fitting a line with Bayes Theorem

As more data is added: update the posterior with more knowledge.

Fitting a line with Bayes Theorem

As more data is added: update the posterior with more knowledge.

Fitting a line with Bayes Theorem

As more data is added: update the posterior with more knowledge.

In general ...

Best parameters *if the noise is Gaussian*: minimize the sum of squared-error between prediction and target values (*L*).

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\mathcal{D})}$$

$$p(\mathcal{D}|\boldsymbol{\theta}) = p_{\text{Gaussian}}(y|\text{mean} = f_{\boldsymbol{\theta}}(\boldsymbol{x}), \sigma = \sigma_{\epsilon})$$

$$p(\boldsymbol{\theta}) = \text{constant}$$

$$\mathcal{L}(\boldsymbol{\theta}) = -\log p(\boldsymbol{\theta}|\mathcal{D})$$

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{i} \frac{1}{2\sigma_{\epsilon}^{2}} (f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}) - y_{i})^{2} + \text{cte.}$$

But how do I choose *f*?

Cybenko^[1] and Hornik^[2]: $f_{W,b}(x) = W_2 \sigma(W_1^T x + b_1) + b_2$ approximates any continuous function for sufficient $\{W, b\}$.

"Universal approximation theorems": many variations proved.

Neural network \rightarrow stack several of these one after the other.

Universal Approximation Theorem: $\mathbb{R} \times$ a continuous function $\sigma : \mathbb{R} \to \mathbb{R}$ (activation function) and positive integers d, D. The function σ is not a polynomial if and only if, for every continuous function $f : \mathbb{R}^d \to \mathbb{R}^D$ (target function), every compact subset K of \mathbb{R}^d , and every $< \circ$ 0 there exists a continuous function $f : \mathbb{R}^d \to \mathbb{R}^D$ (the super output) with representation

 $f_\epsilon = W_2 \circ \sigma \circ W_1,$

where W_2, W_1 are composable affine maps and \circ denotes component-wise composition, such that the approximation bound

```
\sup_{x\in K} \, \|f(x)-f_{\epsilon}(x)\| < \varepsilon
```

holds for any ϵ arbitrarily small (distance from f to f_ϵ can be infinitely small).

(From Wikipedia)

 G. Cybenko. "Approximation by superpositions of a sigmoidal function". In: *Math. Control Signal Systems* 2 (1989), pp. 303–314.
 Kurt Hornik. "Approximation capabilities of multilayer feedforward networks". In: *Neural Networks* 4.2 (1991), pp. 251–257.

A simple neural network

Danilo Ferreira de Lima (EuXFEL) April 2024

Are these the only θ ?

- Many curves fit the same data \rightarrow control fit complexity.
- Regularization \rightarrow impose prior knowledge on the parameters.
 - E.g.: they should be close to zero.
 - λ controls the regularization strength.

$$\mathcal{L}^{\star}(heta) = \mathcal{L}(heta) + rac{1}{2\lambda^2}\sum_k rac{ heta_k^2}{2\lambda^k}$$

(Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006)

Danilo Ferreira de Lima (EuXFEL) April 2024

Line fit with regularization

As more data is added: update the posterior with more knowledge.

Danilo Ferreira de Lima (EuXFEL) April 2024

Line fit with regularization

As more data is added: update the posterior with more knowledge.

Danilo Ferreira de Lima (EuXFEL) April 2024

Line fit with regularization

As more data is added: update the posterior with more knowledge.

Danilo Ferreira de Lima (EuXFEL) April 2024

Line fit with regularization

As more data is added: update the posterior with more knowledge.

Danilo Ferreira de Lima (EuXFEL) April 2024

Line fit with regularization

As more data is added: update the posterior with more knowledge.

Danilo Ferreira de Lima (EuXFEL) April 2024

Line fit with regularization

As more data is added: update the posterior with more knowledge.

Danilo Ferreira de Lima (EuXFEL) April 2024

Line fit with regularization

As more data is added: update the posterior with more knowledge.

Danilo Ferreira de Lima (EuXFEL) April 2024

Line fit with regularization

As more data is added: update the posterior with more knowledge.

Why does this work?

Assuming the weights have a Gaussian probability distribution a priori.

 $p(\theta|D) = \frac{p(D|\theta) p(\theta)}{p(D)} \quad \text{Bayes' rule} \qquad p(\theta) = p_{\text{Gaussian}}(\theta|0,\lambda)$ $\mathcal{L}^{*}(\theta) \triangleq -\log p(\theta|D) \quad \text{Definition} \qquad p(D|\theta) = p_{\text{Gaussian}}(y|\text{mean} = f_{\theta}(\mathbf{x}), \sigma = \sigma_{\epsilon})$ $\mathcal{L}^{*}(\theta) = \sum \frac{1}{2} (f_{\theta}(\mathbf{x}_{i}) - v_{i})^{2} + \frac{1}{2} \sum \theta_{k}^{2} + \text{cte.}$

$$\mathcal{L}^{\star}(\boldsymbol{\theta}) = \sum_{i} \frac{1}{2\sigma_{\epsilon}^{2}} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}) - y_{i}\right)^{2} + \frac{1}{2\lambda^{2}} \sum_{k} \theta_{k}^{2} + c$$

Representation learning

- Combine variables in a smart way.
- Example: Principal Component Analysis^[4].
 - Find eigenvectors of the covariance matrix $C = \mathbb{E} \left[(\mathbf{x} \overline{\mathbf{x}})^T (\mathbf{x} \overline{\mathbf{x}}) \right].$
 - Rotate in the direction of the eigenvectors to obtain z = f(x).
 - Eigenvectors of highest eigenvalues carry more variance.

[4] Karl Pearson F.R.S. "LIII. On lines and planes of closest fit to systems of points in space". In: *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science* 2.11 (1901), pp. 559–572.

Why does PCA work?

Assume there is a *latent* space *z* to which data *x* can be mapped.

Assume each variable in *z* is uncorrelated to each other.

$$\begin{array}{lll} \boldsymbol{x} & = & \boldsymbol{W} \boldsymbol{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon} \\ \boldsymbol{z} & \sim & \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}) \\ \boldsymbol{\epsilon} & \sim & \mathcal{N}(\boldsymbol{0}, \sigma^2) \end{array}$$

 ϵ is Gaussian noise with std. dev. σ .

Using Bayes Theorem: \boldsymbol{W} is the matrix of eigenvectors; and $\boldsymbol{\mu} = \mathbb{E}[X]$ (supplementary slides).

(Christopher M. Bishop. *Pattern Recognition and Machine Learning (Information Science and Statistics)*. Berlin, Heidelberg: Springer-Verlag, 2006)

Use-case: Enhancing non-invasive X-ray diagnostics

- Complex calibration.
- Non-invasive.
- Pulse-resolved.

- Simple calibration
- Invasive.
- Train-resolved.

The method

How certain are you about f_{θ} ?

- Data uncertainty \rightarrow different f_{θ} .
- Assume θ are approx. Gaussian.
- Fit mean (μ_{θ}) and std. deviation (σ_{θ}) of each θ .
- Proofs and assumptions in^[5].
- To optimize f_{θ} : maximize $\mathcal{F}(\theta)$.
- Prediction for a new sample *x*:
 - Use many $\boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{\theta}}, \boldsymbol{\sigma}_{\boldsymbol{\theta}}).$
 - Prediction \rightarrow mean $f_{\theta}(\mathbf{x})$.
 - Uncertainty \rightarrow root-mean-square-error of $f_{\theta}(\mathbf{x})$.

[5] Charles Blundell et al. *Weight Uncertainty in Neural Networks*. 2015. arXiv: 1505.05424 [stat.ML].

 $\begin{aligned} \mathcal{F}(\boldsymbol{\theta}) &= \mathsf{KL}\left[q(\boldsymbol{\theta}|\boldsymbol{\mu}_{\boldsymbol{\theta}}, \boldsymbol{\sigma}_{\boldsymbol{\theta}})||\boldsymbol{p}(\boldsymbol{\theta})\right] \\ &+ \mathbb{E}_{q(\boldsymbol{\theta}|\boldsymbol{\mu}_{\boldsymbol{\theta}}, \boldsymbol{\sigma}_{\boldsymbol{\theta}})}\left[\log \boldsymbol{p}\left(\mathsf{data}|\boldsymbol{\theta}\right)\right] \end{aligned}$

Summary

- Machine Learning is available to improve your analysis methodology by *sculpting functions* to transform data.
- Take a theory-based approach to Machine Learning!
- It is important to understand the assumptions made in each method and how we can gain an understanding on the data uncertainty.
- Hands-on session includes topics above and, in addition:
 - The kernel method and Support Vector Machines.
 - Gaussian Processes and connection with Neural Networks.
 - Bayesian Optimization.
 - Mixture Models.

Additional material for the hands-on session

Probabilities

- Do an experiment *N* times and measure some *X* and *Y*.
- We call X and Y random variables.
- Their actual values are *samples*: *x* and *y*.
- $N \to \infty$: the fraction of times $X = x_i$ and $Y = y_i$ is the probability $P(X = x_i, Y = y_i) \cong \frac{n_{ij}}{N}$.

Probability density

- Probability density \rightarrow probability per unit of the random variable.
- Recover probabilities by integrating the probability density.
- Bring over rules from the probabilities:

$$P(x \in [x_a, x_b]) = \int_{x_a}^{x_b} p(x) dx$$

$$p(x) \ge 0$$

$$\int_{-\infty}^{\infty} p(x) = 1$$

$$p(x, y) = p(x|y) p(y)$$

$$p(x) = \int_{-\infty}^{\infty} p(x, y) dy$$

Expectations

- Expectation → weighted mean with weights given by the probabilities.
- Mean of a random variable $X: \mathbb{E}[X]$.
- Variance of a random variable X: var[X].

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} xp(x)dx$$
$$\mathbb{E}[X] \approx \frac{1}{N} \sum_{n=1}^{N} x_n$$
$$var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Covariance

Extend the concept of variance to multiple variables.

$$cov[\boldsymbol{X}, \boldsymbol{Y}] = \mathbb{E}[(\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}])(\boldsymbol{Y} - \mathbb{E}[\boldsymbol{Y}])^{T}]$$

The covariance normalized by the variance gives us the correlation coefficient.
 Correlation coefficient between -1 and 1 → on average when X grows, does Y also

grow?

$$\rho_{XY} = \frac{cov[X, Y]}{\sqrt{var[X]var[Y]}}$$

Normal distribution

The normal probability density is often used.

- Values close to the mean parameter, μ, have high probability density.
- Width is related to the standard deviation, σ, parameter.

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\boldsymbol{x}-\boldsymbol{\mu})^2}{2\sigma^2}}$$
$$\mathbb{E}[\boldsymbol{X}] = \boldsymbol{\mu}$$
$$\boldsymbol{var}[\boldsymbol{X}] = \sigma^2$$

- Experiment with several noise sources.
- The total noise is often almost Gaussian. Why?
- Theorem:
 - Independent and identically distributed random variables X_i with the mean 0 and variance σ².
 - Mean of *N* variables \rightarrow Gaussian with variance σ^2/N .
- Right: mean of several uniform distributions with $x \in [-1, 1]$.

Mean of 1 variable(s)

- Experiment with several noise sources.
- The total noise is often almost Gaussian. Why?
- Theorem:
 - Independent and identically distributed random variables X_i with the mean 0 and variance σ².
 - Mean of *N* variables \rightarrow Gaussian with variance σ^2/N .
- Right: mean of several uniform distributions with $x \in [-1, 1]$.

Mean of 2 variable(s)

- Experiment with several noise sources.
- The total noise is often almost Gaussian. Why?
- Theorem:
 - Independent and identically distributed random variables X_i with the mean 0 and variance σ².
 - Mean of *N* variables \rightarrow Gaussian with variance σ^2/N .
- Right: mean of several uniform distributions with $x \in [-1, 1]$.

Mean of 3 variable(s)

42

- Experiment with several noise sources.
- The total noise is often almost Gaussian. Why?
- Theorem:
 - Independent and identically distributed random variables X_i with the mean 0 and variance σ^2 .
 - Mean of *N* variables \rightarrow Gaussian with variance σ^2/N .
- Right: mean of several uniform distributions with $x \in [-1, 1]$.

Central Limit Theorem

- Experiment with several noise sources.
- The total noise is often almost Gaussian. Why?
- Theorem:
 - Independent and identically distributed random variables X_i with the mean 0 and variance σ².
 - Mean of *N* variables \rightarrow Gaussian with variance σ^2/N .
- Right: mean of several uniform distributions with $x \in [-1, 1]$.

Mean of 1000 variables

Gaussian Processes: what if there is no θ ?

Assume any pair of $\mathbf{y} = f(\mathbf{x})$ is Gaussian.

Assume a priori the mean value of $f(\mathbf{x})$ is $\mu(\mathbf{x})$.

- Assume a priori covariance C(y, y') = C(x, x').
- Can calculate the full distribution of y without any parameters!
- Infinitely complex NNs are Gaussian Processes^[6].
- Disadvantage: high computational complexity.

(Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006)

^[6] Radford M. Neal. "Priors for Infinite Networks". In: *Bayesian Learning for Neural Networks*. New York, NY: Springer New York, 1996, pp. 29–53.

How can it be done?

Simplification: $\mu(\mathbf{x}) = 0$. *f* is Gaussian between the training data \mathbf{x} and a new probe point \mathbf{x}^* . von Mises [1964]: we can estimate distribution of $f(\mathbf{x}^*)$ given \mathbf{x} .

$$\begin{array}{ll} f(\boldsymbol{x}) & \sim & \mathcal{GP}\left(0, \boldsymbol{C}(\boldsymbol{x}, \boldsymbol{x}')\right) \\ \begin{bmatrix} f(\boldsymbol{x}) \\ f(\boldsymbol{x}^{\star}) \end{bmatrix} & \sim & \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \boldsymbol{C}_{\boldsymbol{x}\boldsymbol{x}} & \boldsymbol{C}_{\boldsymbol{x}\boldsymbol{x}^{\star}} \\ \boldsymbol{C}_{\boldsymbol{x}^{\star}\boldsymbol{x}} & \boldsymbol{C}_{\boldsymbol{x}^{\star}\boldsymbol{x}^{\star}} \end{bmatrix}\right) \end{array}$$

 $\begin{bmatrix} x \\ y \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} A & C \\ C^T & B \end{bmatrix}^{-1} \right) \text{ is a jointly}$ Gaussian variable, then the conditional distribution of x given y is

Theorem (von Mises [1964]): if

$$egin{array}{rcl} x | y &\sim & \mathcal{N}\left(\mu_x - A^{-1} \mathcal{C}(y - \mu_y), A^{-1}
ight), ext{ or } ... \ x | y &\sim & \mathcal{N}\left(\mu_x + \mathcal{C} \mathcal{B}^{-1}(y - \mu_y), \mathcal{A} - \mathcal{C} \mathcal{B}^{-1} \mathcal{C}^T
ight) \end{array}$$

Estimate mean and uncertainty at a probe x^* :

$$f(\mathbf{x}^{\star})|f(\mathbf{x}) \sim \mathcal{N}\left(C_{\mathbf{x}^{\star}\mathbf{x}}C_{\mathbf{x}\mathbf{x}}^{-1}f(\mathbf{x}), C_{\mathbf{x}^{\star}\mathbf{x}^{\star}} - C_{\mathbf{x}^{\star}\mathbf{x}}C_{\mathbf{x}\mathbf{x}}^{-1}C_{\mathbf{x}\mathbf{x}^{\star}}
ight).$$

An example: automatizing SFX

- SFX analysis pipeline has several parameters.
- Online feedback improves the efficiency of the beamtimes.
- Attempt to find parameters that maximize fraction of indexed frames.
- Improved parameters found? → update the standard pipeline.
- Bayesian Optimization.

Bayesian Optimization: Initialize

Run analysis $(\times n)$ and store:

Parameter	Objective
\vec{x}_1	$f(\vec{x}_1)$
:	
<i>x</i> _n	$f(\vec{x}_n)$

48

Danilo Ferreira de Lima (EuXFEL) April 2024

Bayesian Optimization: Fit

Fit $\hat{f}(\vec{x})$ and uncertainty. $\vec{x}_{n+1} = \arg \max_{\vec{x}} \mathcal{A}(\vec{x})$.

Bayesian Optimization: Probe

Run analysis at \vec{x}_{n+1} and store:

Parameter	Objective
,	f(x T)
<i>x</i> ₁	$I(\mathbf{x}_1, D)$
\vec{x}_{n+1}	$f(\vec{x}_{n+1}, \mathcal{D})$

Danilo Ferreira de Lima (EuXFEL) April 2024

Bayesian Optimization: Re-fit

Fit $\hat{f}(\vec{x})$ and uncertainty. $\vec{x}_{n+2} = \arg \max_{\vec{x}} \mathcal{A}(\vec{x})$.

Bayesian Optimization: Probe

Run analysis at \vec{x}_{n+2} and store:

Parameter	Objective
\vec{x}_1	$f(\vec{x}_1, \mathcal{D})$
:	:
	$f(\vec{\mathbf{x}}, \mathcal{D})$
∧n+1 ₹	$f(\vec{x}_{n+1}, D)$
^ n+2	(x_{n+2}, ν)

Performance

- Very stable and requires few iterations to converge.
- For a quick example: simulated data flowing in AGIPD tuning det. centre, min. SNR and detector-sample distance.

Building trust

- More is not better: only the uncertainties can tell!
- Several methods in use do not provide them \rightarrow can we know when they fail?
- Tell the users our limitations!

Mixture models

- Data produced from K different templates.
- Templates/clusters belong to a discrete set.
- Gaussian Mixture Model samples formalized as:
 - draw an integer number k identifying the cluster;
 - sample from Gaussian with parameters $p_k = (\mu_k, \sigma_k)$.
- Methods to find clusters:
 - Heuristic.
 - Expectation Maximization (EM).
 - Approximate variational inference (use prior knowledge and automatically choose the number of clusters).

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k} \pi_{k} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{k}, \boldsymbol{\sigma}_{k})$$

Reinforcement Learning

- Environment \rightarrow analysis pipeline.
- Model-free RL \rightarrow environment-independent.
 - Input = last + noise (perform action).
 - Was there an improvement (collect reward)?
 - Update agent.
- Objective: maximize total returns G after T attempts.

• At t = T, reset state to the best.

$$\boldsymbol{G} = \sum_{t=1}^{T} \gamma^t \boldsymbol{r}_t$$

56

On-policy Reinforcement Learning

How to optimize the actor?

Maximize returns \rightarrow move parameters in the direction of $\nabla_{\theta} \mathbb{E}_{\pi(\tau \mid \theta)} [G(\tau)]$.

Note: it is hard to calculate $\nabla_{\theta} \mathbb{E}_{\pi(\tau|\theta)} [\cdot] \rightarrow \text{cannot move } \nabla_{\theta} \text{ inside } \mathbb{E}_{f(\theta)}, \text{ because of } \theta!$

Williams^[7] showed that:

- $= \mathbb{E}_{\pi(\tau|\theta)} \left[\nabla_{\theta} \log \pi(\tau|\theta) G(\tau) \right]$ is an unbiased estimator for $\nabla_{\theta} \mathbb{E}_{\pi(\tau|\theta)} \left[G(\tau) \right].$
- Probability of taking a set of actions $\tau = \{(s_1, a_1), \dots, (s_n, a_n)\}$ is $\pi(\tau)$.
- Parameters of the neural network $\boldsymbol{\theta}$.

Many algorithm variations of the objective to improve the returns estimate.

^[7] R. J. Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning". In: *Machine Learning* 8 (1992), pp. 229–256.

Example RL algorithm: REINFORCE

- 1: procedure MAIN
- while True do 2:
- 3: memory \leftarrow Explore and collect rewards()
- 4: Learn(memory)

5: procedure LEARN

- 6: $G \leftarrow \text{calculate returns(rewards)}$
- 7: $\mathcal{L} \leftarrow \mathsf{Mean}\left[G \log \pi(\mathsf{states})\right]$
- 8: Minimize C

9: procedure EXPLORE AND COLLECT REWARDS

- 10: memory \leftarrow {}
- for *i* in 0...*N* episodes do 11:
- 12. state ← initial state
- 13: for t in 0...T steps do 14:
- action \leftarrow RandomSample($\pi_{\theta}(a|s)$) 15:
 - state \leftarrow state + action
- 16: $reward \leftarrow GetReward(state)$
- 17: $memory \leftarrow memory +$ rewards, states, actions
- 18: return memorv

Off-policy RL

- On-policy RL is data-inefficient.
- Bellman^[8] established an optimality condition.
 - Self-consistency of the expected returns.
- Off-policy methods learn to use data from old policies as well.
- Need stabilization methods to avoid diverging from the optimality condition.
 - Definition $Q^{\pi}(s_t, a_t) \triangleq \mathbb{E}_{\pi, i \geq t} [G_t | s_t, a_t]$

Bellman equation $Q^{\pi}(s_t, a_t) = \mathbb{E}_{s_{t+1}}\left[r(s_t, a_t) + \gamma \mathbb{E}_{a_{t+1}}\left[Q^{\pi}(s_{t+1}, a_{t+1})\right]\right]$

^[8] Richard Bellman. "On the Theory of Dynamic Programming". In: *Proceedings of the National Academy of Sciences* 38.8 (1952), pp. 716–719.

Supplementary material

European XFEL

Estimating probability distributions

- How can we know if the data follows a given distribution?
- We can try to fit the data with a parametrised pdf function.
- Several pdf parametrizations with different properties.

Histograms

- A non-parametric solution is to just count how many times a variable appears in several ranges.
- Issue: very dependent on the choice of ranges (bins).
- May provide a skewed view of the pdf when counts are low.
- Becomes very memory-consuming for a pdf of multiple variables.

Kernel density estimation

- An alternative: for each observed data point x_n , use a smoothing function (the kernel) $k(\cdot)$ and sum up the effect of each data point.
- The smoothing reduces the discontinuities from histograms.
- The choice of the kernel width h can be made following some rules of thumb (see Scott's method, for an example) based on the dimension and amount of data.

$$p(x) \cong \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^{D}} K\left(\frac{x-x_{n}}{h}\right)$$

And where do we get those derivatives?

Missing piece: derivative of $f(\theta)$.

 $\frac{f(\theta+\epsilon)-f(\theta)}{\epsilon}$ for small $\epsilon \to$ large numerical errors.

- Store table of derivatives and use the chain rule.
- Automatic differentiation (\neq symbolic differentiation!).
- Back-propagation:
 - Forward-propagate inputs \rightarrow network result.
 - Backwards-propagate outputs in each step for ∇f .
 - All you need is the chain rule.

$$f = A\sigma(W^{T}x + b)$$

$$g_{l}(y) = \sigma(y)$$

$$g_{r}(y) = Ay$$

$$h_{l}(y) = y^{T}x$$

$$h_{r}(y) = y + b$$

$$\frac{\partial f(W)}{\partial W} = \frac{\partial g_r(y)}{\partial y}\Big|_{y=g_l} \times \frac{\partial g_l(y)}{\partial y}\Big|_{y=h_r} \\ \times \frac{\partial h_r(y)}{\partial y}\Big|_{y=h_l} \times \frac{\partial h_l(y)}{\partial y}\Big|_{y=h_r}$$

We need to find θ which minimizes \mathcal{L} .

Assume $\theta = \theta_0$; choose $\theta_1 = \theta_0 + \Delta \theta$ that reduces \mathcal{L} ; repeat.

Many papers on how to best approximate $H \to \mathsf{BFGS}^{[9]}$, Adam^[10], ...

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}_{0} + \Delta \boldsymbol{\theta}) & \cong \mathcal{L}(\boldsymbol{\theta}_{0}) + \Delta \boldsymbol{\theta}^{T} \nabla_{\boldsymbol{\theta}} \mathcal{L}|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{0}} + \frac{1}{2} \Delta \boldsymbol{\theta}^{T} \boldsymbol{H}(\boldsymbol{\theta}_{0}) \Delta \boldsymbol{\theta} & \leftarrow \text{Taylor series} \\ \text{Gradient} & \rightarrow \nabla_{\Delta \boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}_{0} + \Delta \boldsymbol{\theta}) \cong \nabla_{\boldsymbol{\theta}} \mathcal{L}|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{0}} + \boldsymbol{H}(\boldsymbol{\theta}_{0}) \Delta \boldsymbol{\theta} \\ \text{In optimum} & \rightarrow \nabla_{\Delta \boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}_{0} + \Delta \boldsymbol{\theta}) = 0 \\ \text{tep towards} & \rightarrow \Delta \boldsymbol{\theta} = -\boldsymbol{H}(\boldsymbol{\theta}_{0})^{-1} \nabla_{\boldsymbol{\theta}} \mathcal{L}|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{0}} \\ \text{n} \boldsymbol{H} \cong \eta^{-1} \boldsymbol{I} \rightarrow \Delta \boldsymbol{\theta} = -\eta \nabla_{\boldsymbol{\theta}} \mathcal{L}|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{0}} \end{split}$$

[9] C. G. BROYDEN. "The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations". In: *IMA Journal of Applied Mathematics* 6.1 (Mar. 1970), pp. 76–90.
[10] Diederik P. Kingma and Jimmy Ba. *Adam: A Method for Stochastic Optimization*. 2017. arXiv: 1412.6980 [cs.LG].

European XFEL

But images are too big!

- Images with many pixels require a lot of parameters θ . How can we reduce them?
- Assume important features of the images are mostly locally correlated.
- Convolutional Neural Networks substitute $\boldsymbol{W}^T \boldsymbol{x}$ with $\boldsymbol{W} \star \boldsymbol{x}$.
- $\star \rightarrow$ convolution \rightarrow local filter.

67

What if we want to classify data?

- Data $\mathcal{D} \to \mathbf{x}_i$ and labels $y_i \in \{1, \dots, N\}.$
- $f_{\theta,k}$ shall output the probability $p(C_k|\mathbf{x}_i)$ that \mathbf{x}_i belongs to each class C_k .
- Assume all θ are equally likely.

Use *Bayes' rule*:

$$p(oldsymbol{ heta} | \mathcal{D}) = rac{p(\mathcal{D} | oldsymbol{ heta}) \, p(oldsymbol{ heta})}{p(\mathcal{D})}$$

Choose $\boldsymbol{\theta}$ that minimizes $\mathcal{L}(\boldsymbol{\theta})$.

$$\begin{split} f_{\boldsymbol{\theta},k}(\boldsymbol{x}_i) &= p(C_k | \boldsymbol{x}_i) \\ t_{ik} &= \begin{cases} 1, \text{if } y_i = k \\ 0, \text{otherwise} \end{cases} \\ p(\mathcal{D} | \boldsymbol{\theta}) &= \prod_{i,k} p(C_k | \boldsymbol{x}_i)^{t_{ik}} \\ p(\boldsymbol{\theta}) &= \text{cte.} \\ \mathcal{L}(\boldsymbol{\theta}) &= -\log p(\boldsymbol{\theta} | \mathcal{D}) \\ \mathcal{L}(\boldsymbol{\theta}) &= -\sum_{i,k} t_{ik} \log (f_{\boldsymbol{\theta},k}(\boldsymbol{x}_i)) + \text{cte.} \\ &- \sum_k p(A_k) \log p(B_k) \to \text{cross-entropy}(A, B) \end{split}$$

Kernel methods

- Neural networks: expand non-linearities of functions.
- Different approach: choose $\Phi : \mathbf{x} \to \Phi(\mathbf{x})$, such that $\mathbf{y} = \sum_{i} \theta_i \Phi(\mathbf{x})$.
- Can be reformulated with a *kernel* function $k(\mathbf{x}, \mathbf{x}') = \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$ (dual formulation in^a).
- Support Vector Machines (SVMs): transform a non-linear problem into a linear one.

aChristopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

(Wikipedia)

PCA in maths (I)

Assumptions:

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|0, \mathbf{I})$$

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^{2}\mathbf{I})$$

$$p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

Since every term is Gaussian, $p(\mathbf{x})$ is also Gaussian:

$$p(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{C}, \sigma) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{C})$$

$$\boldsymbol{\mu} = \mathbb{E}[\boldsymbol{X}]$$

$$\boldsymbol{C} = \boldsymbol{W}\boldsymbol{W}^{\mathsf{T}} + \sigma^{2}\boldsymbol{I} = cov[\boldsymbol{X}]$$

70

PCA in maths (II)

We can find the optimum W and μ by maximizing the log-likelihood over all N data points:

$$\log p(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{W}, \sigma) = \sum_{i}^{N} p(\boldsymbol{x}_{i}|\boldsymbol{W}, \boldsymbol{\mu}, \sigma)$$
$$= -\frac{N}{2} |\boldsymbol{C}| - \frac{1}{2} \sum_{i}^{N} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \boldsymbol{C}^{-1}(\boldsymbol{x}_{i} - \boldsymbol{\mu})$$

Setting $\nabla \log p = 0$ (Tipping and Bishop [1999]):

$$\boldsymbol{W} = \boldsymbol{U}(\boldsymbol{L} - \sigma^2 \boldsymbol{I})^{1/2} \boldsymbol{R}$$

U is a matrix with a subset of eigenvectors in the columns;

- *L* is a diagonal matrix of eigenvalues;
- **R** is an arbitrary orthogonal matrix;

the likelihood is highest if the eigenvectors have the highest eigenvalues.

71

Auto-encoders: PCA on steroids

- PCA is linear. How to model non-linear transformations?
- Kernel PCA: use the kernel trick.
- Another way: auto-encoders.
 - Map the input data to itself.
 - Force data compression: reduce dimension in intermediate layer.
- Linear NN \equiv PCA^[11].

Non-linear NN \rightarrow non-linear representation.

^[11] H. Bourlard and Y. Kamp. "Auto-association by multilayer perceptrons and singular value decomposition". In: *Biol. Cybern.* 59 (1988), pp. 291–294.

Assuming Gaussian errors, minimize:

$$\mathcal{L} = \mathbb{E}_{\boldsymbol{x} \in \text{data}} \left[f_{\boldsymbol{\theta}}(\boldsymbol{x}) - \boldsymbol{x} \right]^2$$

Example: The ATLAS Trigger system at the LHC

- ATLAS detector at the LHC: protons are collided and only a fraction of collisions are relevant for physics research.
- Task: select collision events from O(MHz) events to save data at a rate of only O(1 Hz).
- Reliable simulation available \rightarrow allows for supervised learning.

ATLAS trigger system overview [outdated now]
The assumptions behind ML

Data pre-processing

- Fast decisions: use (approx.) symmetry in the input image!
- Rings of energy in each detector layer as the input → avoid large inputs, complex neural networks and aim for fast processing.

The assumptions behind ML

■ PCA to select most relevant components^[12] → simpler neural networks with similar performance.

[12] D. de Lima et al. "Signal Processing". In: ed. by Sebastian Miron. INTECH, 2010. Chap. Segmented Online Neural Filtering System Based On Independent Components Of Pre-Processed Information.

