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The path ahead

■ Focus on the assumptions in Machine
Learning.

■ By choosing assumptions carefully, we
can be sure the method works under
the conditions we expect.

■ These assumptions are closely related
to the uncertainties we will estimate.
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What is Machine Learning?
What we do not want:

(From XKCD)

■ Machine Learning requires understanding of the math
behind it.

■ If you cannot understand it, I would not trust it!
■ The mathematical concepts are very simple, but carry

many assumptions!
■ Be careful: data does not care about your assumptions.
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A bit of history ...

■ All methods rely on strong theorems on the underlying statistics of the data.
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Bayes Theorem: reinterpreting probabilities

P(hypothesis|data) P(data) = P(data|hypothesis) P(hypothesis)
posterior likelihood prior

■ So far: probabilities → experiment can be repeated in the same way.
■ What is the probability that the Earth is destroyed?
■ The Bayesian view of probability: the degree of belief that an event will happen.

■ Make a prior assumption about the event;
■ Calculate the likelihood it will happen based on data;
■ Extract the posterior information with an updated degree of belief.
■ P(data) is the probability this data happens considering all hypotheses. It is often taken

as a normalization term.
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How does this help?!

■ Past data D → features xxx i and yi .
■ Given a new xxx ′, what is y ′?

■ Assume y = fθθθ(xxx) + ϵ .
■ ϵ is zero-mean Gaussian noise.

■ Example: y = f (x) = βx + α+ ϵ.
■ In this example, θ = (α, β).
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Fitting a line with Bayes Theorem
■ As more data is added: update the posterior with more knowledge.

Data points: 0

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Fitting a line with Bayes Theorem
■ As more data is added: update the posterior with more knowledge.

Data points: 1

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Fitting a line with Bayes Theorem
■ As more data is added: update the posterior with more knowledge.

Data points: 2

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Fitting a line with Bayes Theorem
■ As more data is added: update the posterior with more knowledge.

Data points: 3

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Fitting a line with Bayes Theorem
■ As more data is added: update the posterior with more knowledge.

Data points: 4

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Fitting a line with Bayes Theorem
■ As more data is added: update the posterior with more knowledge.

Data points: 5

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Fitting a line with Bayes Theorem
■ As more data is added: update the posterior with more knowledge.

Data points: 6

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Fitting a line with Bayes Theorem
■ As more data is added: update the posterior with more knowledge.

Data points: 7

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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In general ...

■ Best parameters if the noise is Gaussian: minimize the sum of squared-error
between prediction and target values (L).

p(θθθ|D) =
p(D|θθθ)p(θθθ)

p(D)

p(D|θθθ) = pGaussian(y |mean = fθθθ(xxx), σ = σϵ)

p(θθθ) = constant
L(θθθ) = − log p(θθθ|D)

L(θθθ) =
∑

i

1
2σ2

ϵ

(fθθθ(xxx i)− yi)
2 + cte.
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But how do I choose f?
■ Cybenko[1] and Hornik[2]: fWWW ,bbb(xxx) = WWW 2σ(WWW

T
1 xxx + b1) + b2

approximates any continuous function for sufficient {WWW ,bbb}.
■ “Universal approximation theorems”: many variations proved.

■ Neural network→ stack several of these one after the other.

(From Wikipedia)

[1] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Math. Control Signal Systems 2 (1989), pp. 303–314.
[2] Kurt Hornik. “Approximation capabilities of multilayer feedforward net-
works”. In: Neural Networks 4.2 (1991), pp. 251–257.
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Are these the only θθθ?

■ Many curves fit the same data →
control fit complexity.

■ Regularization → impose prior
knowledge on the parameters.
■ E.g.: they should be close to zero.
■ λ controls the regularization strength.

L⋆(θ) = L(θ) + 1
2λ2

∑
k

θ2
k

(Christopher M. Bishop. Pattern Recognition and
Machine Learning (Information Science and Statistics).

Berlin, Heidelberg: Springer-Verlag, 2006)
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Line fit with regularization
■ As more data is added: update the posterior with more knowledge.

Data points: 0

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Line fit with regularization
■ As more data is added: update the posterior with more knowledge.

Data points: 1

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Line fit with regularization
■ As more data is added: update the posterior with more knowledge.

Data points: 2

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Line fit with regularization
■ As more data is added: update the posterior with more knowledge.

Data points: 3

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Line fit with regularization
■ As more data is added: update the posterior with more knowledge.

Data points: 4

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Line fit with regularization
■ As more data is added: update the posterior with more knowledge.

Data points: 5

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Line fit with regularization
■ As more data is added: update the posterior with more knowledge.

Data points: 6

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Line fit with regularization
■ As more data is added: update the posterior with more knowledge.

Data points: 7

Prior: what α and
β make sense?

Likelihood: what α
and β fit the data?

Posterior: updated
knowledge.

Samples from
the posterior.
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Why does this work?

■ Assuming the weights have a Gaussian probability distribution a priori.

p(θθθ|D) =
p(D|θθθ)p(θθθ)

p(D)
Bayes’ rule

L⋆(θθθ) ≜ − log p(θθθ|D) Definition

p(θθθ) = pGaussian(θ|0, λ)

p(D|θθθ) = pGaussian(y |mean = fθθθ(xxx), σ = σϵ)

L⋆(θθθ) =
∑

i

1
2σ2

ϵ

(fθθθ(xxx i)− yi)
2 +

1
2λ2

∑
k

θ2
k + cte.
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Representation learning

■ Combine variables in a smart way.
■ Example: Principal Component Analysis[4].

■ Find eigenvectors of the covariance matrix
C = E

[
(xxx − xxx)T (xxx − xxx)

]
.

■ Rotate in the direction of the eigenvectors to
obtain zzz = f (xxx).

■ Eigenvectors of highest eigenvalues carry more
variance.

[4] Karl Pearson F.R.S. “LIII. On lines and planes of closest fit
to systems of points in space”. In: The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science 2.11
(1901), pp. 559–572.

(From Wikipedia)
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Why does PCA work?

■ Assume there is a latent space zzz to which data xxx can be mapped.
■ Assume each variable in zzz is uncorrelated to each other.

xxx = WWWzzz +µµµ+ ϵ

zzz ∼ N (0, III)
ϵ ∼ N (0, σ2)

■ ϵ is Gaussian noise with std. dev. σ.
■ Using Bayes Theorem: WWW is the matrix of eigenvectors; and µµµ = E[X ]

(supplementary slides).
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(Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Berlin, Heidelberg: Springer-Verlag, 2006)
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Use-case: Enhancing non-invasive X-ray diagnostics

Photo-Electron Spectrometer (PES)
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■ Low resolution.
■ Complex calibration.
■ Non-invasive.
■ Pulse-resolved.

■ High resolution.
■ Simple calibration
■ Invasive.
■ Train-resolved.
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The method

Training Inference

Collect data
(PES xxx , GS yyy )

Denoise
and reduce

x̄̄x̄x = PCA(xxx)

Denoise
and reduce

ȳ̄ȳy = PCA(yyy)

Fit
ȳ̄ȳy = f (x̄̄x̄x)

Collect data
(PES xxx ′, GS yyy ′)

Denoise and reduce

Predict
ŷ ′ŷ ′ŷ ′ = PCA−1(f (x̄ ′x̄′x̄ ′))

Propagate
uncertainty

PES
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How certain are you about fθ?

■ Data uncertainty → different fθθθ.
■ Assume θθθ are approx. Gaussian.
■ Fit mean (µθ) and std. deviation (σθ) of each θ.
■ Proofs and assumptions in[5].
■ To optimize fθθθ: maximize F(θθθ).
■ Prediction for a new sample xxx :

■ Use many θθθ ∼ N (µθµθµθ,σθσθσθ).
■ Prediction → mean fθθθ(xxx).
■ Uncertainty → root-mean-square-error of fθθθ(xxx).

[5] Charles Blundell et al. Weight Uncertainty in Neural Networks.
2015. arXiv: 1505.05424 [stat.ML].

Bayesian Neural
Networks

F(θθθ) = KL [q(θθθ|µθµθµθ,σθσθσθ)||p(θθθ)]
+Eq(θθθ|µθµθµθ,σθσθσθ) [log p (data|θθθ)]

https://arxiv.org/abs/1505.05424
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Summary

■ Machine Learning is available to improve your analysis methodology by sculpting
functions to transform data.

■ Take a theory-based approach to Machine Learning!
■ It is important to understand the assumptions made in each method and how we can

gain an understanding on the data uncertainty.
■ Hands-on session includes topics above and, in addition:

■ The kernel method and Support Vector Machines.
■ Gaussian Processes and connection with Neural Networks.
■ Bayesian Optimization.
■ Mixture Models.
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Additional material for the hands-on
session
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Probabilities

■ Do an experiment N times and
measure some X and Y .

■ We call X and Y random variables.
■ Their actual values are samples: x and

y .
■ N → ∞: the fraction of times X = xi

and Y = yi is the probability
P(X = xi ,Y = yi) ≊

nij
N .
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Probability density
■ Probability density → probability per unit of the

random variable.
■ Recover probabilities by integrating the

probability density.
■ Bring over rules from the probabilities:

P(x ∈ [xa, xb]) =

∫ xb

xa

p(x)dx

p(x) ≥ 0∫ ∞

−∞
p(x) = 1

p(x , y) = p(x |y)p(y)

p(x) =

∫ ∞

−∞
p(x , y)dy
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Expectations

■ Expectation → weighted mean with
weights given by the probabilities.

■ Mean of a random variable X : E[X ].
■ Variance of a random variable X :

var[X ].

E[X ] =

∫ ∞

−∞
xp(x)dx

E[X ] ≊
1
N

N∑
n=1

xn

var[X ] = E[(X − E[X ])2]
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Covariance

■ Extend the concept of variance to multiple variables.

cov[XXX ,YYY ] = E[(XXX − E[XXX ]) (YYY − E[YYY ])T ]

■ The covariance normalized by the variance gives us the correlation coefficient.
■ Correlation coefficient between -1 and 1 → on average when X grows, does Y also

grow?

ρXY =
cov[X ,Y ]√
var[X ]var[Y ]
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Normal distribution

■ The normal probability density is often used.
■ Values close to the mean parameter, µ, have

high probability density.
■ Width is related to the standard deviation, σ,

parameter.

N (x |µ, σ2) =
1√

2πσ2
e− (x−µ)2

2σ2

E[X ] = µ

var[X ] = σ2
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Central Limit Theorem

■ Experiment with several noise sources.
■ The total noise is often almost

Gaussian. Why?
■ Theorem:

■ Independent and identically distributed
random variables Xi with the mean 0
and variance σ2.

■ Mean of N variables → Gaussian with
variance σ2/N.

■ Right: mean of several uniform
distributions with x ∈ [−1,1].

Mean of 1 variable(s)
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Central Limit Theorem

■ Experiment with several noise sources.
■ The total noise is often almost

Gaussian. Why?
■ Theorem:

■ Independent and identically distributed
random variables Xi with the mean 0
and variance σ2.

■ Mean of N variables → Gaussian with
variance σ2/N.

■ Right: mean of several uniform
distributions with x ∈ [−1,1].

Mean of 2 variable(s)
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Central Limit Theorem

■ Experiment with several noise sources.
■ The total noise is often almost

Gaussian. Why?
■ Theorem:

■ Independent and identically distributed
random variables Xi with the mean 0
and variance σ2.

■ Mean of N variables → Gaussian with
variance σ2/N.

■ Right: mean of several uniform
distributions with x ∈ [−1,1].

Mean of 3 variable(s)
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Central Limit Theorem

■ Experiment with several noise sources.
■ The total noise is often almost

Gaussian. Why?
■ Theorem:

■ Independent and identically distributed
random variables Xi with the mean 0
and variance σ2.

■ Mean of N variables → Gaussian with
variance σ2/N.

■ Right: mean of several uniform
distributions with x ∈ [−1,1].

Mean of 7 variable(s)
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Central Limit Theorem

■ Experiment with several noise sources.
■ The total noise is often almost

Gaussian. Why?
■ Theorem:

■ Independent and identically distributed
random variables Xi with the mean 0
and variance σ2.

■ Mean of N variables → Gaussian with
variance σ2/N.

■ Right: mean of several uniform
distributions with x ∈ [−1,1].

Mean of 1000 variables
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Gaussian Processes: what if there is no θ?

■ Assume any pair of yyy = f (xxx) is Gaussian.
■ Assume a priori the mean value of f (xxx) is µ(xxx).
■ Assume a priori covariance C(y , y ′) = C(xxx ,xxx ′).
■ Can calculate the full distribution of yyy without

any parameters!
■ Infinitely complex NNs are Gaussian

Processes[6].
■ Disadvantage: high computational complexity.

[6] Radford M. Neal. “Priors for Infinite Networks”. In: Bayesian
Learning for Neural Networks. New York, NY: Springer New York,
1996, pp. 29–53.

(Christopher M. Bishop. Pattern
Recognition and Machine Learning

(Information Science and Statistics). Berlin,
Heidelberg: Springer-Verlag, 2006)
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How can it be done?
Simplification: µ(xxx) = 0.
f is Gaussian between the training data xxx
and a new probe point xxx⋆.
von Mises [1964]: we can estimate
distribution of f (xxx⋆) given xxx .

f (xxx) ∼ GP (0,C(xxx ,xxx ′))[
f (xxx)
f (xxx⋆)

]
∼ N

([
0
0

]
,

[
Cxxxxxx Cxxxxxx⋆

Cxxx⋆xxx Cxxx⋆xxx⋆

])

Theorem (von Mises [1964]): if[
x
y

]
∼ N

([
µx
µy

]
,

[
A C

CT B

]−1
)

is a jointly

Gaussian variable, then the conditional
distribution of x given y is

x |y ∼ N
(
µx − A−1C(y − µy ),A−1) , or ...

x |y ∼ N
(
µx + CB−1(y − µy ),A − CB−1CT ) .

Estimate mean and uncertainty at a probe xxx⋆:

f (xxx⋆)|f (xxx) ∼ N
(
Cxxx⋆xxxC−1

xxxxxx f (xxx),Cxxx⋆xxx⋆ − Cxxx⋆xxxC−1
xxxxxx Cxxxxxx⋆

)
.
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An example: automatizing SFX

Analysis

Algorithm

User

Data stream

Optimize

Inform

■ SFX analysis pipeline has several
parameters.

■ Online feedback improves the
efficiency of the beamtimes.

■ Attempt to find parameters that
maximize fraction of indexed frames.

■ Improved parameters found? →
update the standard pipeline.

■ Bayesian Optimization.
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Bayesian Optimization: Initialize

■ Run analysis (×n) and store:

Parameter Objective

x⃗1 f (x⃗1)
...

...
x⃗n f (x⃗n)
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Bayesian Optimization: Fit

■ Fit f̂ (x⃗) and uncertainty.
■ x⃗n+1 = argmaxx⃗ A(x⃗).
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Bayesian Optimization: Probe

■ Run analysis at x⃗n+1 and store:

Parameter Objective

x⃗1 f (x⃗1,D)
...

...
x⃗n+1 f (x⃗n+1,D)
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Bayesian Optimization: Re-fit

■ Fit f̂ (x⃗) and uncertainty.
■ x⃗n+2 = argmaxx⃗ A(x⃗).

0.0
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Bayesian Optimization: Probe

■ Run analysis at x⃗n+2 and store:

Parameter Objective

x⃗1 f (x⃗1,D)
...

...
x⃗n+1 f (x⃗n+1,D)
x⃗n+2 f (x⃗n+2,D)
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Performance

■ Very stable and requires few iterations to converge.
■ For a quick example: simulated data flowing in AGIPD tuning det. centre, min. SNR

and detector-sample distance.
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Building trust

■ More is not better: only the uncertainties can tell!
■ Several methods in use do not provide them → can we know when they fail?
■ Tell the users our limitations!
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Mixture models

■ Data produced from K different templates.
■ Templates/clusters belong to a discrete set.
■ Gaussian Mixture Model samples formalized as:

■ draw an integer number k identifying the cluster;
■ sample from Gaussian with parameters pk = (µk , σk ).

■ Methods to find clusters:
■ Heuristic.
■ Expectation Maximization (EM).
■ Approximate variational inference (use prior

knowledge and automatically choose the number of
clusters).

p(xxx) =
∑

zzz

p(zzz)p(xxx |zzz) =
∑

k

πkN (xxx |µµµk ,σσσk )
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Reinforcement Learning

Environment

Agent

Resu
lts

Reward rt

Action a

■ Environment → analysis pipeline.
■ Model-free RL →

environment-independent.
■ Input = last + noise (perform action).
■ Was there an improvement (collect

reward)?
■ Update agent.

■ Objective: maximize total returns G
after T attempts.
■ At t = T , reset state to the best.

G =
T∑

t=1

γt rt
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On-policy Reinforcement Learning

■ How to optimize the actor?
■ Maximize returns → move parameters in the direction of ∇θθθEπ(τ |θθθ) [G(τ)].

■ Note: it is hard to calculate ∇θθθEπ(τ |θθθ) [·] → cannot move ∇θθθ inside Ef (θθθ), because of θθθ!

■ Williams[7] showed that:
■ Eπ(τ |θθθ) [∇θθθ log π(τ |θθθ)G(τ)] is an unbiased estimator for ∇θθθEπ(τ |θθθ) [G(τ)].
■ Probability of taking a set of actions τ = {(s1, a1), . . . , (sn, an)} is π(τ).
■ Parameters of the neural network θθθ.

■ Many algorithm variations of the objective to improve the returns estimate.

[7] R. J. Williams. “Simple statistical gradient-following algorithms for connectionist reinforcement learning”. In:
Machine Learning 8 (1992), pp. 229–256.
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Example RL algorithm: REINFORCE

1: procedure MAIN
2: while True do
3: memory← Explore and collect rewards()
4: Learn(memory)

5: procedure LEARN
6: G← calculate returns(rewards)
7: L ← Mean [G log π(states)]
8: Minimize L

9: procedure EXPLORE AND COLLECT REWARDS
10: memory← {}
11: for i in 0...N episodes do
12: state← initial state
13: for t in 0...T steps do
14: action← RandomSample(πθ(a|s))
15: state← state + action
16: reward← GetReward(state)
17: memory← memory +

rewards, states, actions
18: return memory
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Off-policy RL

■ On-policy RL is data-inefficient.
■ Bellman[8] established an optimality condition.

■ Self-consistency of the expected returns.

■ Off-policy methods learn to use data from old policies as well.
■ Need stabilization methods to avoid diverging from the optimality condition.

Definition Qπ(st ,at) ≜ Eπ,i≥t [Gt |st ,at ]

Bellman equation Qπ(st ,at) = Est+1

[
r(st ,at) + γEat+1 [Q

π(st+1,at+1)]
]

[8] Richard Bellman. “On the Theory of Dynamic Programming”. In: Proceedings of the National Academy of
Sciences 38.8 (1952), pp. 716–719.
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Supplementary material
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Estimating probability distributions
■ How can we know if the data follows a given distribution?
■ We can try to fit the data with a parametrised pdf function.
■ Several pdf parametrizations with different properties.
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Histograms

■ A non-parametric solution is to just count how
many times a variable appears in several
ranges.

■ Issue: very dependent on the choice of ranges
(bins).

■ May provide a skewed view of the pdf when
counts are low.

■ Becomes very memory-consuming for a pdf of
multiple variables.
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Kernel density estimation

■ An alternative: for each observed data point xn,
use a smoothing function (the kernel) k(·) and
sum up the effect of each data point.

■ The smoothing reduces the discontinuities from
histograms.

■ The choice of the kernel width h can be made
following some rules of thumb (see Scott’s
method, for an example) based on the
dimension and amount of data.

p(x) ≊
1
N

N∑
n=1

1
hD K

(
x − xn

h

)
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And where do we get those derivatives?

■ Missing piece: derivative of f (θ).

■ f (θ+ϵ)−f (θ)
ϵ for small ϵ → large numerical errors.

■ Store table of derivatives and use the chain rule.
■ Automatic differentiation (̸= symbolic differentiation!).
■ Back-propagation:

■ Forward-propagate inputs → network result.
■ Backwards-propagate outputs in each step for ∇f .
■ All you need is the chain rule.

f = Aσ(W T x + b)

gl(y) = σ(y)

hl(y) = yT x hr (y) = y + b

gr (y) = Ay

∂f (W )

∂W
=

∂gr (y)
∂y

∣∣
y=gl

× ∂gl(y)
∂y

∣∣
y=hr

× ∂hr (y)
∂y

∣∣
y=hl

× ∂hl(y)
∂y

∣∣
y=hr
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How to find θ?
■ We need to find θθθ which minimizes L.
■ Assume θθθ = θθθ0; choose θθθ1 = θθθ0 +∆θθθ that reduces L; repeat.
■ Many papers on how to best approximate HHH → BFGS[9], Adam[10], . . .

L(θθθ0 +∆θθθ) ≊ L(θθθ0) + ∆θθθT ∇θθθL|θθθ=θθθ0
+

1
2
∆θθθT HHH(θθθ0)∆θθθ ← Taylor series

Gradient→ ∇∆θθθL(θθθ0 +∆θθθ) ≊ ∇θθθL|θθθ=θθθ0
+HHH(θθθ0)∆θθθ

In optimum→ ∇∆θθθL(θθθ0 +∆θθθ) = 0

Step towards→ ∆θθθ = −HHH(θθθ0)
−1∇θθθL|θθθ=θθθ0

When HHH ≊ η−1III → ∆θθθ = −η∇θθθL|θθθ=θθθ0

[9] C. G. BROYDEN. “The Convergence of a Class of Double-rank Minimization Algorithms 1. General Consid-
erations”. In: IMA Journal of Applied Mathematics 6.1 (Mar. 1970), pp. 76–90.
[10] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.6980
[cs.LG].

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
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But images are too big!

■ Images with many pixels require a lot of parameters θθθ. How can we reduce them?
■ Assume important features of the images are mostly locally correlated.

■ Convolutional Neural Networks substitute WWW Txxx with WWW ⋆ xxx .
■ ⋆ → convolution → local filter.
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What if we want to classify data?

■ Data D → xxx i and labels
yi ∈ {1, . . . ,N}.

■ fθθθ,k shall output the probability p(Ck |xxx i)
that xxx i belongs to each class Ck .

■ Assume all θθθ are equally likely.
■ Use Bayes’ rule:

p(θθθ|D) =
p(D|θθθ)p(θθθ)

p(D)

■ Choose θθθ that minimizes L(θθθ).

fθθθ,k (xxx i) = p(Ck |xxx i)

tik =

{
1, if yi = k
0,otherwise

p(D|θθθ) =
∏
i,k

p(Ck |xxx i)
tik

p(θθθ) = cte.
L(θθθ) = − log p(θθθ|D)

L(θθθ) = −
∑
i,k

tik log (fθθθ,k (xxx i)) + cte.

−
∑

k

p(Ak ) log p(Bk ) → cross-entropy(A,B)
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Kernel methods

■ Neural networks: expand non-linearities of
functions.

■ Different approach: choose Φ : xxx → Φ(xxx), such
that yyy =

∑
i θiΦ(xxx).

■ Can be reformulated with a kernel function
k(xxx ,xxx ′) = Φ(xxx)TΦ(xxx ′) (dual formulation ina).

■ Support Vector Machines (SVMs): transform a
non-linear problem into a linear one.

aChristopher M. Bishop. Pattern Recognition and Machine Learn-
ing (Information Science and Statistics). Berlin, Heidelberg:
Springer-Verlag, 2006.

(Wikipedia)
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PCA in maths (I)

Assumptions:

p(zzz) = N (zzz|0, I)
p(xxx |zzz) = N (WWWzzz +µµµ, σ2III)

p(xxx) =

∫
p(xxx |zzz)p(zzz)dzzz

Since every term is Gaussian, p(xxx) is also Gaussian:

p(xxx |µµµ,CCC, σ) = N (xxx |µµµ,CCC)

µµµ = E[XXX ]

CCC = WWWWWW T + σ2III = cov [XXX ]
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PCA in maths (II)
We can find the optimum WWW and µµµ by maximizing the log-likelihood over all N data points:

log p(xxx |µµµ,WWW , σ) =
N∑
i

p(xxx i |WWW ,µµµ, σ)

= −N
2
|CCC| − 1

2

N∑
i

(xxx i −µµµ)CCC−1
(xxx i −µµµ)

Setting ∇ log p = 0 (Tipping and Bishop [1999]):

WWW = UUU(LLL − σ2III)1/2RRR

■ UUU is a matrix with a subset of eigenvectors in the columns;
■ LLL is a diagonal matrix of eigenvalues;
■ RRR is an arbitrary orthogonal matrix;
■ the likelihood is highest if the eigenvectors have the highest eigenvalues.
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Auto-encoders: PCA on steroids

■ PCA is linear. How to model non-linear
transformations?

■ Kernel PCA: use the kernel trick.
■ Another way: auto-encoders.

■ Map the input data to itself.
■ Force data compression: reduce dimension in

intermediate layer.

■ Linear NN ≡ PCA[11].
■ Non-linear NN → non-linear representation.

[11] H. Bourlard and Y. Kamp. “Auto-association by multilayer per-
ceptrons and singular value decomposition”. In: Biol. Cybern. 59
(1988), pp. 291–294.

■ Assuming Gaussian errors,
minimize:
L = Exxx∈data [fθθθ(xxx)− xxx ]2
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Example: The ATLAS Trigger system at the LHC

■ ATLAS detector at the LHC: protons
are collided and only a fraction of
collisions are relevant for physics
research.

■ Task: select collision events from
O(MHz) events to save data at a rate of
only O(1 Hz).

■ Reliable simulation available → allows
for supervised learning.

ATLAS trigger system overview [outdated now]
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Data pre-processing
■ Fast decisions: use (approx.) symmetry in the input image!
■ Rings of energy in each detector layer as the input → avoid large inputs, complex

neural networks and aim for fast processing.
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Electron Neural Network preselection

■ PCA to select most relevant components[12] →
simpler neural networks with similar
performance.

[12] D. de Lima et al. “Signal Processing”. In: ed. by Sebastian
Miron. INTECH, 2010. Chap. Segmented Online Neural Filtering
System Based On Independent Components Of Pre-Processed In-
formation.
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