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Agenda

 Brief introduction to the Wendelstein 7-X (W7-X) stellarator and infrared diagnostics

 Computer vision applications:

 Thermal overload detection/anticipation (machine protection, real-time, image processing)

 Anomalous image detection (unsupervised learning, anomaly detection, autoencoder)

 Dataset preparation (image annotation, image processing)

 Thermal event instance segmentation (supervised learning, deep learning, detection, segmentation)

 Summary
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The Wendelstein 7-X Stellarator

 The largest and most advanced stellarator in the

world

 Located at the Max Planck Institute for Plasma

Physics (IPP) in Greifswald, Germany

 Imaging systems are used for plasma diagnostics

 Expected to sustain plasma for 30 min in the upcoming

Operational Phases (OPs) 2.N (2.2 from September

2024)

 Reached 480 s (8 min) discharge of 1.3 GJ energy

turnover with on average 2.7 MW of heating power in

OP2.1 (2023)

M. Jakubowski
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Plasma Image Diagnostics

Divertor)

Divertor heat load [a.u.] J. Fellinger et al., PFMC-19, 2023

Basic Protection

 Protect water-cooled Plasma Facing Components

(PFCs) from thermal overloads with infrared (IR)

cameras

 Trigger the Fast Interlock System (FIS) to terminate a

discharge when a thermal overload is anticipated

Advanced Protection & Control (facilitated by deep

learning)

 Thermal event detection

 Feedback control

W7-X has 12 IR cameras, and 10 divertor units are

monitored

Plasma Vessel W7-X Sequence

★Animated
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Thermal Overload Detection (TOD)

20181017.041 AEF40

Requirement: Δ ≥ system delay, i.e., ቊ
50 𝑚𝑠, 𝐶𝑃𝑈
20 𝑚𝑠, 𝐺𝑃𝑈

Δ

Risk

Process entire FoV without pre-defined RoIs and assess risk to dynamically adjust temperature thresholds.

★Animated
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Thermal Overload Detection (TOD) – Evaluation

Evaluated the entire Operational Phase (OP) 1.2, totalling 1419 discharges corresponding to 12`074

discharge sequences (19`447`678 images).

Conclusion: Full-frame infrared image processing with dynamic temperature thresholding improves the

versatility and effectiveness of real-time machine protection in thermonuclear fusion devices compared to the

protection of predefined regions of interest with fixed temperature thresholding.

False positives: Heating was turned off after the alarm [dynamic CPU]

False positives: Operation close to the temperature limits [dynamic CPU]

↑ senstivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
↓ FPR = 1 − specificity =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
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Anomalous Image Data in OP1.2

Transmission interference

Narrow dynamic range

Transmission interference and bottom artifacts

Vertical strap and strong vignetting

★Animated
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Unsupervised Anomalous Image Detection

✓ Correct discharge sequence data:

✗Incorrect discharge sequence data, i.e., vertical strap and strong vignetting:

★Animated
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Anomaly Detection – Evaluation

Manually identified 96 invalid discharges (not counting sequences with partially incorrect images) out of
12`998 OP1.2 discharge sequences excluding noise-only or blank cases (0’s)

(1) AUC = 1.0000 discrimination between good vs bad images (balanced test dataset of 8108 randomly

sampled images)

(2) AUC = 0.9938 discrimination between noise-only vs 125 – 175 °C plasma build-up images after T1

signal (balanced dataset of 414 randomly sampled images)

 Total latency 5.5 ms (Tesla T4 – FP16: transfer, pre-processing, inference, errors)

Receiver Operating Characteristic (1,2)Distribution of Reconstruction Error (1) Latent Space Projection (1)
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Thermal Events in Infrared Images

[1] Strike-line (SL)

[2] Reflection (R) [3] Hot-spot (HS)

[4] UFO [5] Leading Edge (LE)
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Thermal Events – Literature Review

Tungsten Environment in Steady-state Tokamak (WEST)

Cadarache, France

„Deep learning and image processing for the automated analysis of

thermal events on the first wall and divertor of fusion reactors” 09.2022

„Deep learning-based process for the automatic detection, tracking, and

classification of thermal events on the in-vessel components of fusion

reactors” 03.2023

Issues with a deep learning for computer vision dataset:

 Manually annotated by a group of experts

 Highly time-consuming (complex, noisy)

 Inconsistencies between annotators (fuzzy event borders)

 Bounding-boxes, not segmentation masks

 Device specific issues, higher image resolutions, framerates

X. Courtois et al., IR Calibration Workshop, 2023

Propose a semi-automatic approach for infrared image annotation for

thermonuclear fusion devices to accelerate the annotation process and

impose consistency while integrating expert knowledge.

★Animated
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Annotation Method
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Generated Annotations Manual Annotations (Ground Truth) Difference (over-,under- segmentation)

Qualitative Results – Difference
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W7-X: 20180904.007 (AEF10), Generated annotationsW7-X: 20181017.038 (AEF10), Generated annotations

★Animated

Qualitative Results – Generated Sequence
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𝑡𝑙𝑤𝑆𝐷𝐶(𝑎, 𝑏, 𝑤) =
2 σ𝑖

𝑁 𝑎𝑖𝑏𝑖𝑤𝑖

σ𝑖
𝑁 𝑎𝑖𝑤𝑖 + σ𝑖

𝑁 𝑏𝑖𝑤𝑖

temperature over limit weighted SDC (tlwSDC)

𝑆𝐷𝐶(𝑎, 𝑏) =
2 σ𝑖

𝑁 𝑎𝑖𝑏𝑖

σ𝑖
𝑁 𝑎𝑖 + σ𝑖

𝑁 𝑏𝑖

Sørensen–Dice Coefficient (SDC)
Metric

𝑤𝑖 =
𝑇𝑖 − 𝑇𝑖

𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑇𝑖
𝐿𝑖𝑚𝑖𝑡

𝒘 1 6 12 10 2

𝒂 (GT) 0 1 1 1 0 𝑺𝑫𝑪 𝒕𝒍𝒘𝑺𝑫𝑪

𝒃𝟏
0 0 1 1 0 0.8 0.88

𝒃𝟐
0 1 1 0 0 0.8 0.78

0

5

10

15

Evaluation dataset of 21 manually annotated Ground Truth

(GT) images prepared with: „ClickSEG: A Codebase for Click-Based

Interactive Segmentation”

The same proposed annotation method but different segmentation methods!

Quantitative Results
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#55210 Tangential#56927 Tangential

M-H. Aumeunier et al., IR Calibration 

Workshop, 2023

E. Grelier et al., Fusion Engineering and 

Design, 113636, 2023

Conclusions: Deterministic image processing method based on a reference image and max-tree representation significantly

accelerates the thermal event annotation process by consistently generating annotations of a high degree of similarity to

manual annotations in infrared images from nuclear fusion devices.

Examples on WEST Images

Generated in this work Generated in this work
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Strike-line Reflection Hot-spot UFO Leading edge

 A dataset generated with the semi-automatic annotation method from OP1.2 discharge sequences

acquired with IRCAM Caleo

 134 training discharge sequences: 213`883 images, and 3`968 images without any thermal event

 21 test discharge sequences (sampled every 10th image to reduce the test time): 3`657 images

 Supported annotation formats: COCO and YOLO

Annotated Dataset

The maximum number of thermal events in an image = 126

…99
Metallic devices (ITER), compared to graphite devices (W7-X), experience 
even more reflections
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Bounding-box dimensionsBounding-box centroids

Strike-line ↑ Strike-line ↑Reflection ↑ Reflection ↑

Hot-spot ↑ Hot-spot ↑Leading edge ↑ Leading edge ↑

Annotated Dataset – Train Split Exploration 
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Scratch Mask R-CNN (R50, GN): T1 (heating start) → T4 (heating termination), visualize every 5th image

20180904.007 (AEF10), high-iota (FTM) configuration 20181017.038 (AEF10), standard (EJM) configuration

★Animated

Instance Segmentation – Qualitative Results



TUL-DMCS, Bartłomiej JABŁOŃSKI | 8th ESI | Garching | May 2024 | Page 20 (26)

Pretrained YOLOv8 (large): T1 (heating start) → T4 (heating termination), visualize every 5th image

20180829.040 (AEF51), low-iota (DBM) configuration 20181004.032 (AEF51), low-iota (DBM) configuration

Instance Segmentation – Qualitative Results

★Animated
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# Model Pretrained
Inference shape 

[C×H×W]
#Params

Bounding-Box Mask TensorRT [ms]

end-to-endmAP AP@50 mAP↓ AP@50

1 Cascade Mask R-CNN (R18, BN) ✗ 1×768×1024 58.7 M 45.97 74.32 43.67 75.69 -

2 Mask R-CNN (R50, GN) ✗ 1×768×1024 45.3 M 44.05 74.41 43.38 75.29 93.13

3 Mask R-CNN (R18, GN) ✗ 1×768×1024 32.3 M 43.79 74.21 42.88 75.56 69.31

4 Mask R-CNN (R18, GN→BN) ✗ 1×768×1024 32.3 M 43.67 73.57 42.86 75.30 44.07

5 Mask R-CNN (R50, BN) ✗ 1×768×1024 44.0 M 43.37 73.37 41.87 74.30 40.53

6 Mask R-CNN (R50, BN) ✓ 3×768×1024 44.0 M 42.85 72.41 40.70 73.31 40.53

7 YOLOv8 (medium) ✓ 3×1024×1376 27.2 M 43.58 70.26 34.75 70.46 28.82

8 YOLOv8 (small) ✓ 3×1024×1376 11.8 M 43.27 70.65 34.59 71.15 16.25

9 YOLOv8 (nano) ✓ 3×1024×1376 3.3 M 42.42 70.63 34.25 70.69 11.12

10 YOLOv8 (nano) ✓ 3×768×1024 3.3 M 40.14 67.68 29.72 66.94 8.76

11 MaskDINO (R50, DETR) ✓ 3×1024×1024 43.8 M 38.05 73.43 33.50 73.69 -

Evaluation criteria are maximum detections = 100, minimum confidence = 5% and the inference times include pre- and post-processing on NVIDIA Tesla T4.

YOLOv8 models offer faster inference in exchange for a lower segmentation performance (especially localization of small events).

R50/18: ResNet 50/18 backbone

GN: Group Normalization (PyTorch → ONNX supports opset<18; therefore, GN = Reshape + Instance Normalization + Reshape + Mul + Add or TRT plugin)

BN: Batch Normalization (BN + Conv → Conv (folding))

DETR: Detection with Transformers
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(9) YOLOv8 (nano)

(4) Mask R-CNN (R18, GN→BN)

Real-Time Instance Segmentation – Quantitative Results



TUL-DMCS, Bartłomiej JABŁOŃSKI | 8th ESI | Garching | May 2024 | Page 22 (26)

cumulative

cumulative

Annotated Dataset – Thermal Event Temperature
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Ground Truth Prediction Outcome

ND ND TP: good, supressed unnecessary alarm

D ND FP: bad, supressed dangerous alarm

ND D FN, not supressed unnecessary alarm

D D TN, not suppressed dangerous alarm

ND ∅→D FN, not supressed unnecessary alarm

D ∅→D TN, not supressed unnecessary alarm

ND reflection, leading edge D strike-line, hot spot, UFO Statistics

Overload OP1.2 sequences 640

Excl. training sequences (-32) 608

Only NDs in image (20.23%) 123

Only Ds in image 303

Total reflections (ND) (62%) 1005

Total strike-lines (D) 327

Total hot spots (D) 261

Total leading edges (ND) (1%) 17

Overload (o) = region of pixels exceeding the corresponding temperature limit in image (S)

ND = non-dangerous (positive class), D = dangerous (negative class), ∅ = no matching detection

ቊ
1, 𝑖𝑓 ∀𝑜 ∈ 𝑆, 𝑜 ∈ 𝑁𝐷
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(suppress)

Machine Protection – Non-Dangerous Overload Suppression
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Model
Per Image Per Overload

AP R@P(1) Suppressions ↓ AP R@P(1) Suppressions

afbb8a1 (1) 1.000 1.000 123 1.000 0.988 1010

662ca1e (4) 0.974 0.967 119 0.998 0.976 997

35b16da (5) 0.986 0.911 112 0.999 0.985 1007

94f2e90 (3) 0.947 0.894 110 0.996 0.761 778

c633384 (6) 0.971 0.805 99 0.998 0.894 914

efef13d (2) 0.983 0.724 89 0.999 0.801 819

e1412b9 (7) 0.994 0.992 122 0.999 0.850 869

c2ba23e (10) 0.981 0.976 120 0.996 0.408 417

683d08f (9) 0.998 0.870 107 0.999 0.748 764

e5a3a55 (8) 0.994 0.715 88 0.996 0.633 647

↑ Precision (P) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
↑ Recall (R) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (TP + FN = number of ground truth annotations)(TP + FP = number of predictions)

↑ R@P(1) = recall at precision of 1 (no FPs)

↑ Average Precision (AP) = σ𝑛 𝑅𝑛 − 𝑅𝑛−1 𝑃𝑛, for n confidence thresholds

Mask

R-CNN

YOLOv8

Exemplary overloads

Exemplary false positive
Tiny hot spot

Machine Protection – Non-Dangerous Overload Suppression Evaluation
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Presented varied applications of computer vision for machine protection in the nuclear fusion 

device – Wendelstein 7-X:

I. Real-time overload anticipation in an entire FoV with dynamic thresholds…

→ protect PFCs from overheating

II. Real-time anomalous image detection…

→ verify if images are correct so that PFCs can be protected with [I]

III. Offline semi-automatic infrared discharge annotation method…

→ facilitate supervised deep learning in [IV]

IV. Real-time thermal event instance segmentation…

→ scene understanding and non-dangerous overload suppression to reduce alarms in [I]

Summary
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(1) 𝜇𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇𝑥𝑦
′ 𝑡 =

𝑇𝑥𝑦 𝑡 − 𝑛 − 1 𝑡𝑓𝑟𝑎𝑚𝑒 + 𝑇𝑥𝑦 𝑡 − 𝑛 − 2 𝑡𝑓𝑟𝑎𝑚𝑒 + ⋯ + 𝑇𝑥𝑦 𝑡

𝑛

(2) ∆𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

(3) q (heat-flux) estimate

(4) Threshold

(5) Risk

Risk Model
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Thermal Overload Detection Method

1. Full-frame processing (1280×1024) instead of Regions of Interest (RoIs)

2. Dynamic temperature threshold instead of a fixed threshold
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 Real-time constraint is 110 ms = 160 ms – 50 ms (safety margin)

 Acquisition rate is 100 Hz, a new image every 10 ms

 CoDaS Fast Control Station (FCS) triggers the next processing step every 10 ms

 AMD EPYC 7402P 24-core CPU and NVIDIA Tesla T4 GPU

 1-channel 16-bit 1280×1024 IR images

CPU

GPU

Processing Performance
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 During the previous experimental campaign OP1.2 (2017-2018), no autonomous protection

system was in operation, and the inertially-cooled (uncooled) test divertors were affected by

overloads

 It enables backtesting

 During OP2.1 (2022-2023), PFCs will be water-cooled and become vulnerable to overloads

Detection Result Definition

True Positive (TP) The alarm is triggered within −1000, −50 ms before the overload

True Negative (TN) NEITHER the alarm NOR the overload occurs

False Positive (FP) EITHER the alarm is triggered within −∞, −1000 ms before the overload

OR the alarm is triggered when no overload occurs

False Negative (FN) The alarm is triggered within −50, ∞ ms before the overload, i.e., it is too late to

compensate for the system delay

Evaluation Criteria for Binary Output
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Thermal Overload Detection – Evaluation

CPU
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Anomalous Image Detection Method

Trained only on correct images!
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Unsupervised Anomalous Image Detection

✗ Incorrect discharge sequence data, i.e., only-noise:

✗→✓ Incorrect to correct discharge sequence data, i.e., plasma build-up transition from noise-only to

observable heat loads:

★Animated
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Variational Autoencoder Formulas

• t-distributed stochastic neighbour embedding

pΦ(z∣x) ≈ pΘ​(z)

−DKL ​[PΦ ​(z∣x)∥PΘ​(z)]

z = μ(z)+Σ(z)∗ϵ

L(Φ,Θ,x) = −DKL ​[PΦ ​(z∣x)∥PΘ​(z)]+Eq(z∣x)​[log(pΘ​​(x∣z))]

Prior pΘ​(z)
Posterior pΦ(z∣x)
Likelihood pΘ(z∣x)

𝐷𝐾𝐿 𝑃∥𝑄 = −
1

2
෍

𝑖=0

𝑛

1 + log 𝜎𝑞𝑖
2 − 𝜇𝑞𝑖

2 − 𝜎𝑞𝑖
2

𝑆𝑆𝐼𝑀 𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑

=
1

𝑛
෍

𝑖=1

𝑛
2µ𝑡𝑟𝑢𝑒𝑖

2 µ𝑝𝑟𝑒𝑑𝑖

2 + 𝑐1 2σ𝑡𝑟𝑢𝑒−𝑝𝑟𝑒𝑑𝑖
+ 𝑐2

µ𝑡𝑟𝑢𝑒𝑖

2 + µ𝑝𝑟𝑒𝑑𝑖

2 + 𝑐1 σ𝑡𝑟𝑢𝑒𝑖

2 + σ𝑝𝑟𝑒𝑑𝑖

2 + 𝑐2

𝐵𝐶𝐸 𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑

= −
σ𝑖=1

𝑛 𝑦𝑡𝑟𝑢𝑒
𝑖 log 𝑦𝑝𝑟𝑒𝑑

𝑖 + 1 − 𝑦𝑡𝑟𝑢𝑒
𝑖 log 1 − 𝑦𝑝𝑟𝑒𝑑

𝑖

𝑛

𝑀𝑆𝐿𝐸 𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 =
σ𝑖=1

𝑛 log 𝑦𝑡𝑟𝑢𝑒
𝑖 + 1 − log 𝑦𝑝𝑟𝑒𝑑

𝑖 + 1
2

𝑛

𝑀𝐴𝐸 𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 =
σ𝑖=1

𝑛 𝑦𝑡𝑟𝑢𝑒
𝑖 − 𝑦𝑝𝑟𝑒𝑑

𝑖

𝑛
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Segmentation Method
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Segmentation Method – Leading Edge

poloidal (Θ, theta)

toroidal (Φ, phi)

1 1
1 1 1

1 1

1 1
1 1 1

1 1
1 1 1 1 1

Θ Θ
Θ

ΦΦ

low-iota divertor

AEF51 port

1 1 1 1 1 1 1 1 1 1∪ ∪

Pre-Processing

Strike-Line and Divertor 
Masking

Blob Extraction

Max-Tree
Construction

Direct Attribute Filtering

  (toroidal)

  (toroidal)
θ (poloidal)

Input Image Scene Model

Binary Mask
Leading Edges

Strike-Line Mask

Median Filter

 -Aligned
White Top-Hat

Attribute Coordinate (   )

Attribute Intensity (μ±σ)

Component Map

Attribute Area

1

1
2

2

3

3

Φ-Aligned White Top-Hat
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Most Frequent Annotations

Discharge sequence containing most SL, R, LE and total thermal events. Discharge sequence containing most HS.
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Mask R-CNN
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YOLOv8
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1. Model predictions.

2. Assign each predicted instance to the ground truth instance with the highest IoU above the threshold (IoU ≥@).

3. Sort the predicted instances based on confidence scores in descending order.

4. PR: Calculate precision and recall at each step as you iterate through the sorted predictions:

a. TP: Prediction has a correct category and sufficient IoU;

b. FP: Prediction has an incorrect category or insufficient IoU;

c. FN: If ground truth is not matched with any prediction;

5. AP: Interpolate and compute the area under the precision-recall curve.

6. mAP: Calculate the mean of the individual class average precisions.

7. mAP@0.5:0.05:0.95: Repeat for different IoU thresholds @ and calculate the mean.

IoU(𝐴, 𝐵) =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵

Precision (P) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Recall (R) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

mAP =
σ𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐴𝑃𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑛𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠

mAP@0.5: 0.95 =
σ𝐼𝑜𝑈 𝑚𝐴𝑃@𝐼𝑜𝑈

𝑛𝐼𝑜𝑈𝑠

(TP + FN = number of ground truth annotations)(TP + FP = number of predictions)

mAP – mean Average Precision
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Bad Cold Pixel Removal
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Max-Tree
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Real-Time Constraint

t

𝑻𝒍𝒊𝒎𝒊𝒕

𝑻𝒕𝒉

treaction = 160 ms 

1200 °C

1000 °C

tmax_delay = 110 ms 

𝒒 = 𝟏𝟎
𝑴𝑾

𝒎𝟐

↑ 𝒒 ⇒ ↓ 𝑻𝒕𝒉
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• t-distributed stochastic neighbour embedding

pΦ(z∣x) ≈ pΘ​(z)

−DKL ​[PΦ ​(z∣x)∥PΘ​(z)]

z = μ(z)+Σ(z)∗ϵ

L(Φ,Θ,x) = −DKL ​[PΦ ​(z∣x)∥PΘ​(z)]+Eq(z∣x)​[log(pΘ​​(x∣z))]

Prior pΘ​(z)
Posterior pΦ(z∣x)
Likelihood pΘ(z∣x)

𝐷𝐾𝐿 𝑃∥𝑄 = −
1

2
෍

𝑖=0

𝑛

1 + log 𝜎𝑞𝑖
2 − 𝜇𝑞𝑖

2 − 𝜎𝑞𝑖
2

𝑆𝑆𝐼𝑀 𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑

=
1

𝑛
෍

𝑖=1

𝑛
2µ𝑡𝑟𝑢𝑒𝑖

2 µ𝑝𝑟𝑒𝑑𝑖

2 + 𝑐1 2σ𝑡𝑟𝑢𝑒−𝑝𝑟𝑒𝑑𝑖
+ 𝑐2

µ𝑡𝑟𝑢𝑒𝑖

2 + µ𝑝𝑟𝑒𝑑𝑖

2 + 𝑐1 σ𝑡𝑟𝑢𝑒𝑖

2 + σ𝑝𝑟𝑒𝑑𝑖

2 + 𝑐2

𝐵𝐶𝐸 𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑

= −
σ𝑖=1

𝑛 𝑦𝑡𝑟𝑢𝑒
𝑖 log 𝑦𝑝𝑟𝑒𝑑

𝑖 + 1 − 𝑦𝑡𝑟𝑢𝑒
𝑖 log 1 − 𝑦𝑝𝑟𝑒𝑑

𝑖

𝑛

𝑀𝑆𝐿𝐸 𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 =
σ𝑖=1

𝑛 log 𝑦𝑡𝑟𝑢𝑒
𝑖 + 1 − log 𝑦𝑝𝑟𝑒𝑑

𝑖 + 1
2

𝑛

𝑀𝐴𝐸 𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 =
σ𝑖=1

𝑛 𝑦𝑡𝑟𝑢𝑒
𝑖 − 𝑦𝑝𝑟𝑒𝑑

𝑖

𝑛

VAE Formulas
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Extinction and MSER
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WEST

#55210 Divertor


