Vitrifying biological samples for cryo-imaging experiments

Gergely Papp

Team Leader

EIRO FORUM ESI - 14/5/2024

Which samples?

one we want to study.

- Purified protein soltions (Single Particle Analysis)
 - Struture determination at atomic resolution

L. We start with this.	2. We end up with this.
	Pure protein solution

others.

- Cells, monocellular organisms
 - · In-situ study, proteins in their netural environment

Cryo-EM principle

3D structure of the protein

Local resolution (Å)

The traditional sample preparation method

- Poor reproducibility of thin ice film production
 - Slow grid screening process
 - Multi-parametric optimizations
 - "No size fits all"

EasyGrid, automated Cryo-EM sample preparation

EMBL - GR

EMBL – HD & Imaging Centre

Preparation process for SPA samples

 Atmospheric plasma treatment

- Atmospheric plasma treatment
- Advantage:
 - In-line hydrophilic treatment
 - Minimum time between treatment and sample deposition
 - Possibility of material deposition and use of other gases

- Atmospheric plasma treatment
- Picoliter drop dispenser

- Atmospheric plasma treatment
- Picoliter drop dispenser
- Advantage:
 - Highly repeatable
 - Controlled deposition

- Atmospheric plasma treatment
- Picoliter drop dispenser
- Chamber
 - Pressure wave generator
 - Humidity control
 - Ethane jet for vitrification

- Atmospheric plasma treatment
- Picoliter drop dispenser
- Chamber
 - Pressure wave generator
 - Humidity & temperature control
 - Ethane jet for vitrification
- Advantage:
 - Contactless spreading
 - Higher cooling rate

- Atmospheric plasma treatment
- Picoliter drop dispenser
- Chamber
 - Air blades (spreading)
 - Humidity control
 - Ethane jet for vitrification
- Digital Holographic Microscope (DHM)

- Atmospheric plasma treatment
- Picoliter drop dispenser
- Chamber
 - Air blades (spreading)
 - Humidity control
 - Ethane jet for vitrification
- Digital Holographic Microscope (DHM)
 - Control of the sample thickness

- Atmospheric plasma treatment
- Picoliter drop dispenser
- Chamber
 - Air blades (spreading)
 - Humidity control
 - Ethane jet for vitrification
- Digital Holographic Microscope (DHM)
- Dewar
 - Storage in Liquid Nitrogen
 - Ethane reservoir

- Atmospheric plasma treatment
- Picoliter drop dispenser
- Chamber
 - Air blades (spreading)
 - Humidity control
 - Ethane jet for vitrification
- Digital Holographic Microscope (DHM)
- Dewar

The EasyGrid machine – sample storage

Capacity : 10 boxes = 40 EM grids

GUI

Purified protein structures

Time-Resolved experiments -Towards movies of biochemical reactions

EMBL

adapted from protopedia.org

Time-Resolved experiments -Towards movies of biochemical reactions

Towards time resolved studies (light triggerig)

Light triggering setup (CAD)

Light triggering video – Slow motion

Which samples?

one we want to study.

- Purified protein soltions (Single Particle Analysis)
 - Struture determination at atomic resolution

L. We start with this.	2. We end up with this.
	Pure protein solution

others.

- Cells, monocellular organisms
 - · In-situ study, proteins in their netural environment

Which samples?

- Purified protein soltions (Single Particle Analysis)
 - Struture determination at atomic resolution

PROTEIN PURIFICATION		
	Pure protein solution	
A cell is a mixture of	A purified protein solution	

- Cells, monocellular organisms
 - · In-situ study, proteins in their netural environment

Cell vitrification for in-situ imaging

Cryo-ET FIB-SEM and data collection

Cryo-Electron Tomography of HeLa cells

Nucleus

Cytosol

Julia Mahamid et al., Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351,969-972(2016).DOI:10.1126/science.aad8857

Cell

Acknowledgements

- Papp Team:
 - Victor Armijo
 - Jeremy Sinoir
 - Franck Felisaz
 - Raphael Cohen
 - Thibault Deckers
 - Caroline Bissardon
 - Lea Lecomte
 - Robert Janocha (alumnus)
 - Arthur Felisaz (alumnus)
 - Marcos Lopez-Marrero (alumnus)
 - Florent Cipriani (alumnus)
 - Kévin Lauzier (alumnus)
 - Christopher Rossi (alumnus)
- Kristina Djinovic-Carugo
- Stephen Cusack

Galej Group:

•

- Jiangfeng Zhao
- Bhogaraju Group:
 - Michael Adams (alumnus)
- Kowalinski Group:
 - Harald Bernhard
 - Georg Wolf
- EM support
 - Romain Linares
 - Michael Hons (alumnus)
 - Sarah Schneider (alumna)

Mattei Team

- Olivier Gemin (alumnus)
- Simon Fromm
- Zhengyi Yang
- Georg Wolf
- Mahamid Group:
 - Steffen Klein
 - Anastasiia Babenko (alumna)
- Eustermann Group
 - Anna Jungblut
- Christoph Müller
- Schneider Group
 - Gleb Bourenkov

WAGINE

Kirill Kovalev

Life Science A L L I A N C E

- ESRF
 - Peter Cloetens
- INSERM
 - Sylvain Bohic
- IBS
 - Guy Schoehn
 - Felix Weis
 - Martin Weik
 - Benoit Gallet

Thank you

Questions?

Preserving natural shape (Trypanosoma brucei)

Leica GP2

Cryo-LM

EasyGrid

X-ray nano imaging (ESRF ID16A)

10um

Phase images

XRF image K/Fe distribution map (area density ng/mm²)

Cryo-Electro Tomography principle

Improvement in ice quality (HeLa cells)

Cell vitrification for in-situ imaging

Ideal sample for Single Particle Analysis

Vitrification: rapid freezing of the sample to form amorphous ice and not crystalline.

Rapid switch between sample supports

X-ray nano imaging (ESRF ID16A)

2D Phase Reconstructions (25nm/pixel) - Toxoplasma Gondii infected HFF cells (24h post infection)

Ice layer thickness can be tuned

EasyGrid – use cases

EasyGrid – use cases

The traditional workflow for Cryo-EM SPA

The EasyGrid workflow for Cryo-EM SPA

EasyGrid Control machine

EasyGrid Control - principle

EasyGrid Control cryo observation column

SPA Grids – thickness map

Image from Cryo-EM Low resolution atlas

SPA Grids – thickness map

Glacios atlas

Grids with vitrified cells

EGC (HeLa2-4_g1 : BF650ms)

Optimizing sample preparation

EasyGrid

EasyGrid Control

X-ray nano imaging

Acknowledgements

- Papp Team:
 - Victor Armijo
 - Jeremy Sinoir
 - Franck Felisaz
 - Raphael Cohen
 - Thibault Deckers
 - Caroline Bissardon
 - Lea Lecomte
 - Robert Janocha (alumnus)
 - Arthur Felisaz (alumnus)
 - Marcos Lopez-Marrero (alumnus)
 - Florent Cipriani (alumnus)
 - Kévin Lauzier (alumnus)
 - Christopher Rossi (alumnus)
- Kristina Djinovic-Carugo
- Stephen Cusack

Galej Group:

•

- Jiangfeng Zhao
- Bhogaraju Group:
 - Michael Adams (alumnus)
- Kowalinski Group:
 - Harald Bernhard
 - Georg Wolf
- EM support
 - Romain Linares
 - Michael Hons (alumnus)
 - Sarah Schneider (alumna)

Mattei Team

- Olivier Gemin (alumnus)
- Simon Fromm
- Zhengyi Yang
- Georg Wolf
- Mahamid Group:
 - Steffen Klein
 - Anastasiia Babenko (alumna)
- Eustermann Group
 - Anna Jungblut
- Christoph Müller
- Schneider Group
 - Gleb Bourenkov

WAGINE

Kirill Kovalev

Life Science A L L I A N C E

- ESRF
 - Peter Cloetens
- INSERM
 - Sylvain Bohic
- IBS
 - Guy Schoehn
 - Felix Weis
 - Martin Weik
 - Benoit Gallet

Questions?

EasyGrid at EMBL-HD Imaging Center (2024)

Cryo-EM principle

