

Modelling of high density collisional sheath

D. Tskhakaya

Institute of Plasma Physics of the CAS, Prague, Czech Republic

Report for TSVV - 7

Resume

Proposed tasks (for 2022)

- > The study of extremely high density DEMO (and ITER) relevant sheath, ~ $n_e > 5x10^{21} \text{ m}^{-3}$
- Two sets of modelling: one with only D⁺, another with molecules included (D₂⁺ⁱ)

Completed tasks

- BIT1 updated; relevant for TSVV3, 4, 7 and WP-PWIE
- DEMO-relevant plasma sheath with only D⁺

Ongoing tasks

DEMO-relevant plasma sheath including molecules

Publications / Presentations

D. Tskhakaya, 12th International Conference on Atomic and Molecular Data and Their Applications (ICAMDATA), 25-29.09.2022, Mola di Bari, Italy.

2 publications under preparation.

Motivation for HD sheath modelling

 Analytic $T_{e} \sim 1.0 - 1.6 \, \text{eV}$ 🛧 Analytic_{old} 0.9 $M_{\parallel} = 1 + \chi' - \sqrt{\chi'^2} + 2\chi' < 1$ 0.8 ♦ PIC 0.7 Sheath contains molecules 0.6 ≥_0.5 0.4 0.3 0.2 0.1 0^{_} 0.5 2 n [m⁻³] 1.5 2.5 3 3.5 **x 10**²¹

Sheath edge:

 $\chi' = \frac{\upsilon_{mt} \left(1 - V_{\parallel}^{n} / V_{\parallel}\right) + \left(\upsilon_{ei}\right)}{2c_{s} \sin(\theta)} x_{wall}$

What about divertor heat loads?

COMPASS

Power loads to the divertor

$$q_{wall} = \gamma M_{\parallel} nc_s T_e \sin\left(\theta\right)^{[2]}, \quad \gamma = \gamma_e + \gamma_i + \phi + \frac{\chi_i + \chi_m}{T_e}, \quad R_E = 0$$

$$\gamma_e = 2, \quad \gamma_i = 3\left(1 + 0.5T_i / T_e\right) \approx 3.5, \quad \phi \approx 2.9, \quad \chi_i = 13.6, \quad \chi_m \approx 2.2$$

$$q_{wall} = \left(8.4 + \frac{15.8}{T_e}\right) JT_e, \quad \gamma_0 = 8.4, \quad J = M_{\parallel} nc_s \sin\left(\theta\right)$$

Contribution of neutrals

$$q_{wall} = \left(8.4 + \frac{15.8}{T_e} + \gamma_n\right) JT_e , \quad \gamma_n = \frac{q^n}{JT_e} + 2.2\frac{F^n}{JT_e}$$

Neutral particle loads

BIT1 modelling of the sheath

Each simulation takes up to 5 M core hours, 10¹⁰ particles, 10⁶ (1D) spatial cells

Needs:

- to speed up the simulation (reduce memory usage)
- Incorporate multy-step atomic processes

BIT1 update: memory allocation

Dynamic memory Particle memory Particle memory allocation in the future allocation in the updated allocation in the original code PIC PIC code Time Sp. 1 Sp. 1 Species. 1 **Species 1** Species 2 Species 2 Species 2 Sp. 2 Sp. N_{sp} Sp. N_{sp} Species N_{sp} Sp. N_{sn} Allocated memory is proportional Species memory is allocated dynamically. the concentration of given to Fully optimized memory usage. Requires major update Memory is uniformly allocated for particle species. of the code. different particle species. More optimized memory usage, Simple implementation, but can but requires significant update of lead to significant fraction of the original code. 10% - 30% faster modelling unused memory. than the original code.

8

BIT1 update: dressed cross-section method

Normalized effective D ionization rate coefficients^[2].

Kinetic collisional-radiative model?

Example from ADAS: $e + Ne^{+i} \rightarrow e + Ne^{+i, (v)}$

Target	states	Number of CS
Ne	89	$(N+3)N/2 = 4\ 096$
Ne ⁺	279	39 339
Ne ⁺²	554	154 289
Ne ⁺³	668	224 114
Ne ⁺⁴	564	159 894
Total	2 154	~ 5.8x10⁵

"Dressed" cross-section method

Dressed cross-section method (ii)

$$\sigma(E,T,n) = \sigma(E) \frac{R(T,n)}{R_{n=0}(T)}$$

$$\int f_m V \sigma(E,T,n) d\vec{V} = R(T,n)$$
$$\sigma(E,T,n \to 0) = \sigma_{n=0}(E)$$

Advantage

- i. large number of interaction channels are effectively incorporated
- ii. cross-sections and rate coefficients are available

Disadvantage

- i. needs calculation of temperature → reduction of the run speed (<10%)
- ii. Threshold energies $E_{\rm th}$ are density and temperature independent
- iii. EDFs assumed to be near-Maxwellian

Dressed cross-section method (iii)

Plasma density and temperature in the DEMO-relevant plasma sheath^[4]

Low ionization rate for < 2 eV plasma

[4] D. Tskhakaya, ICAMDATA 2022