

UKAEA activities in 2023: TDS and microscopy analysis of JET PFCs – plans

Y. Zayachuk, A. Widdowson, I. Jepu, R. Kerr, P. Coad

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

SP E.1 - Coordination activity

- Sample shipments:
	- ➢ Additional PFCs for SPE program
		- \checkmark Divertor tile 2BNG4C (W620 54 301 1) 2010-2012 to VTT for coring (metal work to be removed before sending)
		- \checkmark W probe from lamellae cut samples no. 106, ILW3 C2 standard sample – to IPPLM
		- \checkmark Langmuir probes (removed 2015) shipments TBC
			- 15IN probes 5; 6; 9- confirmed by photos (found in BeHF)
			- 16IN probes 5, 6, 7,8; 9 confirmed by photos; photos of bags and probes holders only – TBC
			- 17IN probes 5; 7 confirmed by photos
		- \checkmark Louvre clips (ILW3)
		- \checkmark 4B baffles and tubes (rotating collector and mirror assembly) confirmed by photos

SP E.2: Comparison of hydrogenic retention quantification

- Baking cycle simulations.
- Study of the efficiency of baking for fuel removal:
	- \triangleright W-CFC (HFGC + tile 1; ILW3 and ILW1-2) and Be samples (4D14, ILW3) \rightarrow divertor and limiter covered.
	- ➢ Initial IBA (IST) or SIMS (VTT)
	- \triangleright TDS long baking (~60 hours) at a relevant temperature (350 °C for divertor, 240° C for limiter).
	- ➢ Post-TDS IBA (IST) or SIMS (VTT).
	- \triangleright Full temperature range TDS up to 1000 °C.
- Continuation and finalization of the work started in 2022.
	- \triangleright Comparison of pre-TDS and post-TDS IBA \rightarrow near surface efficiency.
	- \triangleright Comparison of integrated release during baking and final TDS \rightarrow bulk efficiency.
	- \triangleright Time dependence of release rate during baking \rightarrow power law(s) as function of the state of material.

SP E.2: Comparison of hydrogenic retention quantification

- Retention in molten Be.
	- \triangleright Samples of tile 3A8 (ILW3).
	- ➢ TDS measurements.
	- ➢ Comparison with IBA, pre-TDS and post-TDS (IST).
	- \triangleright Impact of melt damage on retention \rightarrow comparison with undamaged Be.
- Retention in stack B bulk W divertor samples.
	- \triangleright Tile 5, stack B lamellae (ILW3 and ILW1+3).
	- ➢ TDS measurements.
	- \triangleright Toroidal and poloidal (comparing with stacks A, C and D, done previously) comparison of retention and desorption spectra.
	- \triangleright Correlation with pulse data fluence and temperature.

SP E.3: Post-mortem analysis of PFCs and other objects in JET

- Runaway electron damage studies:
	- \triangleright IWGL tile 1XR18.
	- \triangleright IBA analysis in poloidal, toroidal and "depth" direction (IST)
	- ➢ Metallography measurements (IAP).
	- ➢ Main pulse assessment responsible for this damage.

SP E.3: Post-mortem analysis of PFCs and other objects in JET

- Microscopy and microanalysis.
- Bulk W (tile 5) and Langmuir probes:
	- \triangleright Stack C, ILW1 lamella.
	- \triangleright Atom probe analysis \rightarrow which impurities are segregating to grain boundaries and could be sublimating to produce voids.

- \triangleright Study the strain within the substructure using high resolutions EBSD.
- ➢ Replicate Langmuir probe microstructure (voids, grain growth and substructure) by heat treating an as received Langmuir probe.

1 0 0 n m

