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Introduction

- overview about recent developments with respect to the EUTERPE code

- ongoing related physics projects

- EUTERPE is quasi-universal tool (MHD, micro instabilities, turbulence, neoclassics, ...)
- a bunch of supporting/ supplementing codes CONTI, CAS3D, CKA

- focus of work: W7-X experiment
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Recent developments at EUTERPE — Code part

Comprehensive refactoring of the code
- improve modularity
- necessary for GPU

GPU version has been developed
- not yet optimized
- kinetic species run on GPU
- linear solver runs on CPU (planned to use GPU capabilities of PETSc)

Full HDF5 support for mapping and diagnostics

Optimization of mapping
- to speed up stellarator optimization for TSVV 13
- coordinate system now follows magnetic axis
- saves memory
- enables investigation of more exotic equilibria




Recent developments at EUTERPE - Physics part:

code capabilities

- model for islands has been implemented
- extended pullback equations

- global neoclassical terms implemented:
self consistent calculation of radial neoclassical field

- synthetic Mirnov diagnostics has been developed.
- CKA-EUTERPE extended by parallel electric field

some physics projects relevant to TSVV

- investigation of Alfvén physics with islands (with USC)
- build stellarator fast particle transport model with CKA-EUTERPE

- ATEP: local Alfvén sound dispersion relation

- application for the interpretation of experiments

- low frequency modes/ zonal flow oscillations in W7-X (with J. F. Guerrero Arnaiz)
- low mode number electromagnetic modes at LHD (with T. Tanaka)
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Derivation of the CKA-EUTERPE equations with finite £

CKA-EUTERPE
- CKA-EUTERPE is a HAGIS like code version of EUTERPE
advancing amplitudes of MHD modes from CKA with EUTERPE
- can move many modes at the same allowing for their interaction by particle non-linearities
- shall be used as fast particle transport code
- estimate for mode damping needed
- inclusion of E|| (cf. dissertation of M. Schneller)



Derivation of the CKA-EUTERPE equations with finite £

CKA-EUTERPE is based on the gyrokinetic density equation
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Derivation of the CKA-EUTERPE equations with finite £

Insert ansatz into Ohm’s law and multiply resulting equation with
~VA [AiAG (1) exp (—ict)| 6)

and drop all terms proportional to exp [—i (wj + wk) ] (fast oscillations). This yields the first amplitude
equation

atA, + iy (A, &) = XK:N,;‘UKZ\/- . (7)

where i
Ni = AjA; exp [i (wj — wi) t] / AV Ao - Vi Ak (8)

and

' B-VB )\ ] Af exp (—iwgt
Uk = — 2 / a3r { - /HO "+b-V (/\(\10) )} Dk RN ) (’:)n( K )><
. 2110, (9)

X / dudy d(},B*‘m(‘fo(m



Derivation of the CKA-EUTERPE equations with finite £

For the second equation we insert the ansatz into the time derivative of the gyrokinetic density equation,
perform a multiplication with

i bk (1) exp (—iwit) (10)
and again neglect terms proportional to exp [—i (w; + wy) t]. This yields the second amplitude equation
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Caveat: equations of motion in EUTERPE

CKA-EUTERPE uses the v/ -formulation of the equations
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Express E;; with quantities already available in the CKA-EUTERPE model

aA
Ej=-b-V¢— ” — —ZAolexp (1w,t)ZNjk A (15)
- including E| in the equations of motion is tricky (see Jater slides)

- simulation is fine if £ is kept only in the particle trajectories, but simulation breaks instantly if E
enters into the equation for the weight evolution (source term)

- reason is unclear at the moment



Cases and profiles
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- profiles used for E-studies - profiles used for multi-mode studies
- same fast-ion density-profile shape as in ITPA - linear fast-ion density profile to provide
benchmark somewhat uniform drive for all the modes
- fast-ion density doubled to increase v and irrespective of their radial position

reach saturation faster



Shear Alfvén continuum and mode locations
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- shear Alfvén continuum for ITPA case with multiple n’s (CONTI)
- positions of eigenmodes (found with CKA) indicated by black horizontal lines
- regular ITPA mode also part of this scenario — red line at s = 0.25




All modes e

10 10
@ mose 1 ) mode2

- for completeness: radial structure of the
eigenfunctions found with CKA
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Time evolution with and without £
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- with Ey: f = 62.1 kHz and v = 2.46 - 10* s~ !
- inclusion of E reduces -y by about 33%, w not

affected much

- chirping in the nonlinear phase less

pronounced with E|| present



Problems with £

- CKA-EUTERPE uses v|-formulation of

, gyrokinetic theory
10"
. ~~ = 0A /0t-term present in equations of motion
" il ooeeg unless it cancels with V¢ (ideal Ohm’s law)
] -6 . . .
s - now: E;| should be included in equations of
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g 10 1 - simulation becomes numerically unstable if £
10712 . ] is included in the source term
Ey aido . o Mot . . . o
101 1, hot in source term |4 - having E| in the trajectories is fine, but does not
0 %0 100 150 200 250 300 350 change the results much

to/10°

potentially cleanest solution:
- keep Ej only in amplitude equations — “perturbative” model



Particle energies

- time evolution of the kinetic energy of a few arbitrary particles
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- stronger modifications of E if E is also present in trajectories (expected)
- relative energy gains can be significant (one particle triples its energy for a short amount of time)
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Particle energies

- time evolution of the kinetic energy of a few arbitrary particles
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- stronger modifications of E if E is also present in trajectories (expected)
- relative energy gains can be significant (one particle triples its energy for a short amount of time)
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Particle energies

- time evolution of the kinetic energy of a few arbitrary particles
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- stronger modifications of E if E is also present in trajectories (expected)
- relative energy gains can be significant (one particle triples its energy for a short amount of time)



Particle energies

- time evolution of the kinetic energy of a few arbitrary particles

particle 267
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: E, only in Amplitude equations
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- stronger modifications of E if E is also present in trajectories (expected)
- relative energy gains can be significant (one particle triples its energy for a short amount of time)
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Particle energies

- time evolution of the kinetic energy of a few arbitrary particles
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- stronger modifications of E if E is also present in trajectories (expected)
- relative energy gains can be significant (one particle triples its energy for a short amount of time)




Wendolsten

Particle energies

- time evolution of the kinetic energy of a few arbitrary particles
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- stronger modifications of E if E is also present in trajectories (expected)
- relative energy gains can be significant (one particle triples its energy for a short amount of time)
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Multi-mode uniform damping

3B/B,

- multi-mode simulations use linear fast-ion-density profile shown in the beginning

102
10°
10
10°®
108
107
108
10°°
1 0—1 0
1 0—1 1

mode 1
mode 2
mode 3
mode 4
mode 5
mode 6

100 200 800 400 500 600
to;/10°

700

800

- opaque colours: single-mode / full colours:

multi-mode

- initially modes grow in the multi-mode

simulation with same ~ as in single-mode
simulation

- later (but still in linear phase) growth rate of

slow-growing modes increase to the same
value as for fast-growing ones

- nonlinear behaviour in multi-mode simulation

can be similar to single-mode case (see mode
6): probably because it has highest saturation
level anyway — not much affected by other
modes

- but nonlinear behaviour can also be quite

different (see mode 5) — reduced chirping



Multi-mode non-uniform damping

3B /B,

- multi-mode simulations use linear fast-ion-density profile shown in the beginning
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- opaque colours: single-mode / full colours:
multi-mode

- damping rate of mode 2 increased further —
mode is stable in the single-mode case

- interaction with other modes in multi-mode
scenario strong enough to destabilize the mode

next steps:

- check the time-evolving fast-ion density profile
and investigate profile flattening and chirping in
the multi-mode case (using GPU version)

- apply the (now benchmarked model) to a W7-X
scenario
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Wendelstein
Introduction /; J

experimental: iota scan in W7-X
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[Andreeva et al. Nuclear Fusion 62, 026032 (2022).]
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Introduction
island related mode activity in W7-X

Wendolsten

iota scan from high iota (top, FTM) down to standard iota (bottom, EJM) magnetic configuration
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New flux surfaces
We solve the latter equation integrating over s and obtain for s*:

S n
(Fomy + Frgt) ny
= [ ——7+"2-ds +Asin | 2n(mYI + —
(im—J1L) + sm{ m(m +Np90)] )

So

approximating the integral expression:

w1 Fiug

: e
= 2Nplo

(s —s0)® + Asin [27r(m,19 + Ny @)} :

equation describing the new flux surfaces as s* = (s, 9, ).




Topology of flux surfaces
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Naming conventions for the new flux surfaces
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(a) s=max(s(s*,9,9)) |  s=min(s(s*3.¢)) (b) s=min(s(s*9,9)) | s=max(s(s*,9,0))

The relevant flux coordinate is s*.

each s* = const. contour is uniquely mapped to a particular value of s, the unperturbed flux function.



Equation for the continuum

The equation for the Alfvén continuum frequency w in general geometry is
[Chen and Chance 1986]:

v 2 = =4 é N 6
,qu,-n(s) wz%gs = V- (B BZ|V¢|2§S> )

Introducing a Fourier representation for £°

£(5,0,9) =D _&me®™ ™",

m,n
leads to

/VLOIW,'I'I(S)W2 Z Am,n;mn ffim = - Z Bm,n;mn ffsnn
m,n m,n



Island in W7-X FQMO001: HINT vs. VMEC

z/m

HINT, betag=1%, iota-scan, FQM001 (ia=ib=-0.525), phi=36deg.

'VMEC
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0.4 . _vmec, reff=33.15cm
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(/

Comparison of HINT and VMEC calcula-
tions

same energy content
same flux surface averaged pressure
profile

VMEC flux surfaces limiting the island
chain: cyan

re envelope of the island chain
determines island width

average island width 8.86 cm.

ALFVEN CONTINUUM WITH ISLANDS



Alfvén continuum of the N = 1 mode family for W7-X FQM001
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Alfvén continuum of the N = 1 mode family for W7-X FQM001
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n = 0,1 continuum inside island for W7-X FQMO001
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(a) with n = 0 contribution only with coloring to match same parity

(b) with n = 0, 1 contributions. n = 0 branches: color; n = 1 branches: black
convergence demonstrated : (grey: —15 < m < 60, black and colored: —15 < m < 235)
lowest gap: 13 — 14kHz




Global Alfvén modes inside an island

( with J. Cao, R. Kleiber, J. Yang)

- Alfvén contiuum inside an island does not strongly depend on surrounding equilibrium
= start with island in cylindrical equilibrium

- metric with straight filed lines can be expressed analytically using elliptic integrals and Jacobi
functions

- first results show that global modes (MIAE) do exist



Global Alfvén modes inside an island
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Global Alfvén modes inside an island
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Global Alfvén modes inside an island
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Summary of island project

numerical approach to the calculation of the Alfvén continuum
- Alfvén continuum in stellarators in presence of an island
- matching island size with HINT calculations

- up-shift of the Alfén continuum — actually lowest part of an island induced gap
- island induced gaps inside and outside the island
- first global Alfvén eigenmodes in a cylinder (work in progress)

estimate of frequency regions where modes may reside possible in spite of convergence issues



- overview about recent developments with respect to the EUTERPE code

- ongoing related physics projects

- EUTERPE is quasi-universal tool (MHD, micro instabilities, turbulence, neoclassics, ...)
- a bunch of supporting/ supplementing codes CONTI, CAS3D, CKA

- focus of work: W7-X experiment
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