How to reach a theoretical description of MHD and fast particle suitable for an experimental application

M. Borchardt ${ }^{1}$, R. Kleiber ${ }^{1}$, A. Könies ${ }^{1}$,
A. Mishchenko ${ }^{1}$, J. Riemann ${ }^{1}$, C. Slaby ${ }^{1}$
${ }^{1}$ Max Planck Institute for Plasma Physics, Wendelsteinstr. 1,
D- 17491 Greifswald, GermanyEUROfusion

Introduction

overview about recent developments with respect to the EUTERPE code ongoing related physics projects
EUTERPE is quasi-universal tool (MHD, micro instabilities, turbulence, neoclassics, ...)
a bunch of supporting/ supplementing codes CONTI, CAS3D, CKA
focus of work: W7-X experiment

Recent developments at EUTERPE

R. Kleiber ${ }^{1}$, M. Borchardt ${ }^{1}$
${ }^{1}$ Max Planck Institute for Plasma Physics, Wendelsteinstr. 1,
D-17491 Greifswald, Germany

This work has been caried dut within the framework of the EUROTHsion Consortium, tunded by the European Union wia
 expressed are howewer those of the author(s) only and do not necossarity relfact those of the Eurpean Union or th
European Cormisssin. Neither the Euvpean Union nor the European Commission can be held desponsibile tor them.

Recent developments at EUTERPE - Code part

Comprehensive refactoring of the code
improve modularity necessary for GPU

GPU version has been developed
not yet optimized
kinetic species run on GPU
linear solver runs on CPU (planned to use GPU capabilities of PETSc)
Full HDF5 support for mapping and diagnostics
Optimization of mapping
to speed up stellarator optimization for TSVV 13 coordinate system now follows magnetic axis saves memory enables investigation of more exotic equilibria

Recent developments at EUTERPE - Physics part:

code capabilities

model for islands has been implemented
extended pullback equations
global neoclassical terms implemented: self consistent calculation of radial neoclassical field synthetic Mirnov diagnostics has been developed.
CKA-EUTERPE extended by parallel electric field

some physics projects relevant to TSVV

investigation of Alfvén physics with islands (with USC) build stellarator fast particle transport model with CKA-EUTERPE ATEP: local Alfvén sound dispersion relation application for the interpretation of experiments
low frequency modes/ zonal flow oscillations in W7-X (with J. F. Guerrero Arnaiz)
low mode number electromagnetic modes at LHD (with T. Tanaka)

Recent extensions to the CKA-EUTERPE model

C. Slaby ${ }^{1}$
A. Könies ${ }^{1}$
R. Kleiber ${ }^{1}$
${ }^{1}$ Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greif-
swald, Germany

This work has been caried dut within the framework of the EUROTHsion Consortium, tunded by the European Union wia
 expressed are howewer those of the author(s) only and do not necossarity relfact those of the Eurpean Union or th
European Cormisssin. Neither the Euvpean Union nor the European Commission can be held desponsibile tor them.

Derivation of the CKA-EUTERPE equations with finite $E_{\|}$

CKA-EUTERPE

CKA-EUTERPE is a HAGIS like code version of EUTERPE advancing amplitudes of MHD modes from CKA with EUTERPE
can move many modes at the same allowing for their interaction by particle non-linearities shall be used as fast particle transport code
estimate for mode damping needed
inclusion of $E_{\|}$(cf. dissertation of M. Schneller)

Derivation of the CKA-EUTERPE equations with finite $E_{\|}$

CKA-EUTERPE is based on the gyrokinetic density equation

$$
\begin{align*}
\frac{\partial}{\partial t} \nabla \cdot\left[\frac{m_{\mathrm{i}} n_{\mathrm{i}}}{B^{2}} \nabla_{\perp} \phi\right]= & \nabla \cdot\left\{j_{\|}^{(1)} \mathbf{b}+j_{\|}^{(0)}\left[\frac{\mathbf{b} \times \boldsymbol{\kappa}}{B} A_{\|}-\frac{\mathbf{b} \times \nabla A_{\|}}{B}\right]+p_{\|}^{(1)} \frac{\mathbf{b} \times \kappa}{B}+p_{\perp}^{(1)} \frac{\mathbf{b} \times \nabla B}{B^{2}}+\right. \\
& \left.+p_{\|, \text {fast }}^{(1)} \frac{\mathbf{b} \times \boldsymbol{\kappa}}{B}+p_{\perp, \text { fast }}^{(1)} \frac{\mathbf{b} \times \nabla B}{B^{2}}\right\} \tag{1}
\end{align*}
$$

as well as Ampère's law

$$
\begin{equation*}
-\nabla_{\perp}^{2} \boldsymbol{A}_{\|}=\mu_{0} j_{\|}^{(1)}, \tag{2}
\end{equation*}
$$

and Ohm's law

$$
\begin{equation*}
-\frac{\partial}{\partial t} \boldsymbol{A}_{\|}-\mathbf{b} \cdot \nabla \phi=-\frac{\mathrm{b} \cdot \nabla}{\mathrm{e} n_{0, \mathrm{e}}} p_{\|, \mathrm{e}}^{(1)} . \tag{3}
\end{equation*}
$$

We make a complex multi-mode ansatz for ϕ and $A_{\|}$

$$
\begin{align*}
\phi(\mathbf{r}, t) & =\frac{1}{2} \sum_{j}\left[\hat{\phi}_{j}(t) \phi_{0, j}(\mathbf{r}) \exp \left(\mathrm{i} \omega_{j} t\right)+\hat{\phi}_{j}^{*}(t) \phi_{0, j}^{*}(\mathbf{r}) \exp \left(-\mathrm{i} \omega_{j} t\right)\right] \tag{4}\\
A_{\|}(\mathbf{r}, t) & =\frac{1}{2} \sum_{j}\left[\hat{A}_{j}(t) A_{0, j}(\mathbf{r}) \exp \left(\mathrm{i} \omega_{j} t\right)+\hat{A}_{j}^{*}(t) A_{0, j}^{*}(\mathbf{r}) \exp \left(-\mathrm{i} \omega_{j} t\right)\right] \tag{5}
\end{align*}
$$

Derivation of the CKA-EUTERPE equations with finite $E_{\|}$

Insert ansatz into Ohm's law and multiply resulting equation with

$$
\begin{equation*}
-\nabla_{\perp}^{2}\left[\hat{A}_{k}^{*} A_{0, k}^{*}(\mathbf{r}) \exp \left(-\mathrm{i} \omega_{k} t\right)\right] \tag{6}
\end{equation*}
$$

and drop all terms proportional to $\exp \left[-\mathrm{i}\left(\omega_{j}+\omega_{k}\right) t\right]$ (fast oscillations). This yields the first amplitude equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \hat{A}_{j}+\mathrm{i} \omega_{j}\left(\hat{A}_{j}-\hat{\phi}_{j}\right)=\sum_{k} \hat{\mathbb{N}}_{j k}^{-1} u_{k} \hat{A}_{j} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\mathbb{N}}_{j k}=\hat{A}_{j} \hat{A}_{k}^{*} \exp \left[\mathrm{i}\left(\omega_{j}-\omega_{k}\right) t\right] \int \mathrm{d}^{3} \mathbf{r} \nabla_{\perp} A_{0, j} \cdot \nabla_{\perp} A_{0, k}^{*} \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
u_{k}= & -2 \mu_{0} \int \mathrm{~d}^{3} \mathbf{r}\left[\frac{\mathbf{B} \cdot \nabla B}{-B^{2}} j_{\| 0}^{(1) *}+\mathbf{b} \cdot \nabla\left(j_{\| 0}^{(1) *}\right)\right] \frac{\hat{A}_{k}^{*} \exp \left(-\mathrm{i} \omega_{k} t\right)}{\mathrm{e} n_{0, \mathrm{e}}} \times \tag{9}\\
& \times \int \mathrm{d} \mu \mathrm{~d} v_{\|} \mathrm{d} \alpha B_{\|}^{\star} m_{\mathrm{e}} v_{\|}^{2} f_{\mathrm{e}}^{(1)}
\end{align*}
$$

Derivation of the CKA-EUTERPE equations with finite $E_{\|}$

For the second equation we insert the ansatz into the time derivative of the gyrokinetic density equation, perform a multiplication with

$$
\begin{equation*}
\hat{\phi}_{k}^{*} \phi_{0, k}^{*}(\mathbf{r}) \exp \left(-\mathrm{i} \omega_{k} t\right) \tag{10}
\end{equation*}
$$

and again neglect terms proportional to $\exp \left[-\mathrm{i}\left(\omega_{j}+\omega_{k}\right) t\right]$. This yields the second amplitude equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \hat{\phi}_{j}+\mathrm{i} \omega_{j}\left(\hat{\phi}_{j}-\hat{A}_{j}\right)=-\sum_{k} \hat{\mathbb{M}}_{j k}^{-1} T_{k} \hat{\phi}_{j} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\mathbb{M}}_{j k}=\frac{1}{2} \hat{\phi}_{j} \hat{\phi}_{k}^{*} \exp \left[\mathrm{i}\left(\omega_{j}-\omega_{k}\right) t\right] \int \mathrm{d}^{3} \mathbf{r} \frac{m_{\mathrm{i}} n_{i}}{B^{2}} \nabla_{\perp} \phi_{0, j} \cdot \nabla_{\perp} \phi_{0, k}^{*} . \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{k}=\int \mathrm{d}^{3} \mathbf{r} \int \mathrm{~d} \mu \mathrm{~d} v_{\|} \mathrm{d} \alpha \boldsymbol{B}_{\|}^{*}\left\{\frac{\mathbf{b} \times}{Z_{\mathrm{e}}}\left(\frac{m_{\mathrm{f}} \boldsymbol{v}_{\|}^{2}}{B} \boldsymbol{\kappa}+\frac{\mu}{B} \nabla B\right) \cdot\left(-Z \mathrm{e} \nabla \phi_{0, k}^{*} \hat{\phi}_{k}^{*} \exp \left(-\mathrm{i} \omega_{k} t\right) f_{\text {fast }}^{(1)}\right)\right\} . \tag{13}
\end{equation*}
$$

Caveat: equations of motion in EUTERPE

CKA-EUTERPE uses the $v_{\|}$-formulation of the equations

$$
\begin{align*}
\dot{v}_{\|}= & -\mu \nabla B \cdot\left[\mathbf{b}+\frac{m_{s}}{q_{s}} \frac{v_{\|}}{B B_{\|}^{\star}}(\nabla \times \mathbf{B})_{\perp}\right]-\frac{q_{s}}{m_{s}} \frac{\partial\left\langle A_{\|}\right\rangle}{\partial t} \\
& -\frac{q_{s}}{m_{s}}\left\{\mathrm{~b}+\frac{m_{s}}{q_{s}} \frac{v_{\|}}{B B_{\|}^{\star}}\left[\mathbf{b} \times \nabla B+(\nabla \times \mathbf{B})_{\perp}\right]\right\} \cdot \nabla\langle\phi\rangle \tag{14}\\
& -\frac{\mu}{B_{\|}^{\star}}\left[\mathbf{b} \times \nabla B \cdot \nabla\left\langle\boldsymbol{A}_{\|}\right\rangle+\frac{1}{B} \nabla B \cdot(\nabla \times \mathbf{B})_{\perp}\left\langle\boldsymbol{A}_{\|}\right\rangle\right]
\end{align*}
$$

Express $E_{\|}$with quantities already available in the CKA-EUTERPE model

$$
\begin{equation*}
E_{\|}=-\mathbf{b} \cdot \nabla \phi-\frac{\partial \boldsymbol{A}_{\|}}{\partial t} \quad \longrightarrow \quad-\sum_{j} A_{0, j} \exp \left(\mathrm{i} \omega_{j} t\right) \sum_{k} \hat{\mathbb{N}}_{j k}^{-1} u_{k} \hat{A}_{j} \tag{15}
\end{equation*}
$$

including $E_{\|}$in the equations of motion is tricky (see later slides)
simulation is fine if $E_{\|}$is kept only in the particle trajectories, but simulation breaks instantly if $E_{\|}$ enters into the equation for the weight evolution (source term)
reason is unclear at the moment

Cases and profiles

profiles used for $E_{\|}$-studies
same fast-ion density-profile shape as in ITPA benchmark
fast-ion density doubled to increase γ and reach saturation faster

profiles used for multi-mode studies linear fast-ion density profile to provide somewhat uniform drive for all the modes irrespective of their radial position

Shear Alfvén continuum and mode locations

shear Alfvén continuum for ITPA case with multiple n's (CONTI) positions of eigenmodes (found with CKA) indicated by black horizontal lines regular ITPA mode also part of this scenario \rightarrow red line at $s=0.25$

All modes

for completeness: radial structure of the eigenfunctions found with CKA

Time evolution with and without $E_{\|}$

without $E_{\|}: f \cong 63.6 \mathrm{kHz}$ and $\gamma \cong 3.67 \cdot 10^{4} \mathrm{~s}^{-1}$ regular CKA-EUTERPE single-mode simulation

with $E_{\|}: f \cong 62.1 \mathrm{kHz}$ and $\gamma \cong 2.46 \cdot 10^{4} \mathrm{~s}^{-1}$ inclusion of $E_{\|}$reduces γ by about $33 \%, \omega$ not affected much
chirping in the nonlinear phase less pronounced with $E_{\|}$present

Problems with $E_{\|}$

CKA-EUTERPE uses $v_{\| \mid}$-formulation of
 gyrokinetic theory
$\Rightarrow \partial \boldsymbol{A}_{\|} / \partial t$-term present in equations of motion unless it cancels with $\nabla_{\|} \phi$ (ideal Ohm's law) now: $E_{\|}$should be included in equations of motion
simulation becomes numerically unstable if $E_{\|}$ is included in the source term
having $E_{\|}$in the trajectories is fine, but does not change the results much
potentially cleanest solution:
keep $E_{\|}$only in amplitude equations \rightarrow "perturbative" model

Particle energies

time evolution of the kinetic energy of a few arbitrary particles
particle 251

stronger modifications of E if $E_{\|}$is also present in trajectories (expected)
relative energy gains can be significant (one particle triples its energy for a short amount of time)

Particle energies

time evolution of the kinetic energy of a few arbitrary particles
particle 89

stronger modifications of E if $E_{\|}$is also present in trajectories (expected)
relative energy gains can be significant (one particle triples its energy for a short amount of time)

Particle energies

time evolution of the kinetic energy of a few arbitrary particles
particle 112

stronger modifications of E if $E_{\|}$is also present in trajectories (expected)
relative energy gains can be significant (one particle triples its energy for a short amount of time)

Particle energies

time evolution of the kinetic energy of a few arbitrary particles
particle 267

stronger modifications of E if $E_{\|}$is also present in trajectories (expected)
relative energy gains can be significant (one particle triples its energy for a short amount of time)

Particle energies

time evolution of the kinetic energy of a few arbitrary particles
particle 215

stronger modifications of E if $E_{\|}$is also present in trajectories (expected)
relative energy gains can be significant (one particle triples its energy for a short amount of time)

Particle energies

time evolution of the kinetic energy of a few arbitrary particles
particle 7

stronger modifications of E if $E_{\|}$is also present in trajectories (expected)
relative energy gains can be significant (one particle triples its energy for a short amount of time)

Multi-mode uniform damping

multi-mode simulations use linear fast-ion-density profile shown in the beginning

opaque colours: single-mode / full colours: multi-mode
initially modes grow in the multi-mode simulation with same γ as in single-mode simulation
later (but still in linear phase) growth rate of slow-growing modes increase to the same value as for fast-growing ones
nonlinear behaviour in multi-mode simulation can be similar to single-mode case (see mode 6): probably because it has highest saturation level anyway \rightarrow not much affected by other modes
but nonlinear behaviour can also be quite different (see mode 5) \rightarrow reduced chirping

Multi-mode non-uniform damping

multi-mode simulations use linear fast-ion-density profile shown in the beginning

opaque colours: single-mode / full colours: multi-mode
damping rate of mode 2 increased further \rightarrow mode is stable in the single-mode case interaction with other modes in multi-mode scenario strong enough to destabilize the mode
next steps:
check the time-evolving fast-ion density profile and investigate profile flattening and chirping in the multi-mode case (using GPU version)
apply the (now benchmarked model) to a W7-X scenario

A numerical approach to the calculation of the Alfvén continuum in the presence of magnetic islands

Axel Könies ${ }^{1}$,Jinjia Cao ${ }^{2}$,Ralf Kleiber ${ }^{1}$, Joachim Geiger ${ }^{1}$
${ }^{1}$ Max-Planck-Institut für Plasmaphysik, Wendelsteinstr. 1,
D-17491 Greifswald
${ }^{2}$ University of South China, Hengyang, Hunan 421001, China

Introduction

experimental: iota scan in W7-X

[Andreeva et al. Nuclear Fusion 62, 026032 (2022).]

Introduction

island related mode activity in W7-X
iota scan from high iota (top, FTM) down to standard iota (bottom, EJM) magnetic configuration

Time traces (in seconds) from one segmented Rogowski coil for different shots,
showing the change in the nature of the fluctuations
(in this case, in edge plasma currents)
[G. Wurden et al. EPS P2.1068 (2019)]

New flux surfaces

We solve the latter equation integrating over s and obtain for s^{*} :

$$
s^{*}=\int_{s_{0}}^{s} \frac{\left(F_{P}^{\prime} m_{l}+F_{T}^{\prime} \frac{n_{l}}{N_{P}}\right)}{\left(I m_{l}-J \frac{n_{l}}{N_{P}}\right)} \mathrm{d} \bar{s}+A \sin \left[2 \pi\left(m_{l} \vartheta+\frac{n_{l}}{N_{p}} \varphi\right)\right],
$$

approximating the integral expression:

$$
s^{*}=\frac{1}{2} \frac{F_{T}^{\prime} \iota_{0}^{\prime}}{N_{P} l_{0}}\left(s-s_{0}\right)^{2}+A \sin \left[2 \pi\left(m_{l} \vartheta+\frac{n_{l}}{N_{p}} \varphi\right)\right] .
$$

equation describing the new flux surfaces as $s^{*}=(s, \vartheta, \varphi)$.

Topology of flux surfaces

contour lines of $s^{*}=$ const for $\varphi=0$
regions inside and outside the island can
be distinguished
$s^{*}=0$ is the O-point
$s^{*}= \pm A$ labels the separatrices

Naming conventions for the new flux surfaces

The relevant flux coordinate is s^{*}.
each $s^{*}=$ const. contour is uniquely mapped to a particular value of s, the unperturbed flux function.

Equation for the continuum

The equation for the Alfvén continuum frequency ω in general geometry is [Chen and Chance 1986]:

$$
\mu_{0} M_{i} n(s) \omega^{2} \frac{|\nabla \psi|^{2}}{B^{2}} \xi^{s}=\vec{\nabla} \cdot\left(\vec{B} \frac{\vec{B} \cdot \vec{\nabla}}{B^{2}}|\nabla \psi|^{2} \xi^{s}\right)
$$

Introducing a Fourier representation for ξ^{s}

$$
\xi^{s}(s, \vartheta, \varphi)=\sum_{m, n} \xi_{m n}^{s} e^{2 \pi i(m \vartheta+n \varphi)},
$$

leads to

$$
\mu_{0} M_{i} n(s) \omega^{2} \sum_{m, n} A_{m, n ; m n} \xi_{m n}^{s}=-\sum_{m, n} B_{m, n ; m n} \xi_{m n}^{s}
$$

Island in W7-X FQM001: HINT vs. VMEC

HINT, beta $_{0}=1 \%$, iota-scan, FQM001 ($\mathrm{i} a=\mathrm{i}=-0.525$), phi=36deg.

Comparison of HINT and VMEC calculations
same energy content same flux surface averaged pressure profile

VMEC flux surfaces limiting the island chain: cyan
$r_{\text {eff }}$ envelope of the island chain determines island width
average island width 8.86 cm .

Alfvén continuum of the $N=1$ mode family for W7-X FQM001

outside the island -
lower frequencies
spectrum without the island
\rightarrow green symbols
gaps are named with "MIAE" (Magnetic Island induced Alfvén Eigenmodes)
lowest branch at the island position is $(1,-1)$.

Alfvén continuum of the $N=1$ mode family for W7-X FQM001

outside the island -
higher frequencies
spectrum without the island
\rightarrow green symbols
MIAE gaps close to multiples of the island helicity $(5,-1)$

$n=0,1$ continuum inside island for W7-X FQM001

(a)
(a) with $n=0$ contribution only with coloring to match same parity
(b) with $n=0,1$ contributions. $n=0$ branches: color; $n=1$ branches: black convergence demonstrated : (grey: $-15 \leq m \leq 60$, black and colored: $-15 \leq m \leq 235$) lowest gap: $13-14 \mathrm{kHz}$

Global Alfvén modes inside an island

(with J. Cao, R. Kleiber, J. Yang)
Alfvén contiuum inside an island does not strongly depend on surrounding equilibrium
\Rightarrow start with island in cylindrical equilibrium
metric with straight filed lines can be expressed analytically using elliptic integrals and Jacobi functions
first results show that global modes (MIAE) do exist

Global Alfvén modes inside an island

$\omega=1.335540 \mathrm{e}-02 \omega_{A^{\prime}}, \gamma=-4.823539 \mathrm{e}-15 \omega_{\mathrm{A}}$

cylindrical equilibrium $m=3, n=-1$ island: MIAE: even inner island EAE

Global Alfvén modes inside an island

$\omega=2.483893 \mathrm{e}-02 \omega_{A}, \gamma=1.342709 \mathrm{e}-15 \omega_{A}$

cylindrical equilibrium $m=3, n=-1$ island: MIAE: odd inner island EAE

Global Alfvén modes inside an island

$\omega=4.629987 \mathrm{e}-02 \omega_{A}, \gamma=2.453365 \mathrm{e}-15 \omega_{A}$

cylindrical equilibrium $m=3, n=-1$ island: MIAE: odd inner island $\Delta m=4$ NAE

Summary of island project

numerical approach to the calculation of the Alfvén continuum
Alfvén continuum in stellarators in presence of an island matching island size with HINT calculations
. up-shift of the Alfén continuum \rightarrow actually lowest part of an island induced gap
island induced gaps inside and outside the island
first global Alfvén eigenmodes in a cylinder (work in progress)
estimate of frequency regions where modes may reside possible in spite of convergence issues
overview about recent developments with respect to the EUTERPE code ongoing related physics projects
EUTERPE is quasi-universal tool (MHD, micro instabilities, turbulence, neoclassics, ...) a bunch of supporting/ supplementing codes CONTI, CAS3D, CKA focus of work: W7-X experiment

