## **SPA 3 Activities DIFFER 2023**

T.W. Morgan<sup>1,2</sup>, L. Nuckols<sup>3</sup>, J. Rapp<sup>3</sup>

<sup>1</sup>Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands <sup>2</sup>Eindhoven University of Technology, The Netherlands <sup>3</sup>Oak Ridge National Laboratory, USA









#### **UHTC Overview/Background**

- <u>U</u>ltra-<u>H</u>igh <u>T</u>emperature <u>C</u>eramics (UHTC)
- Defined by:
  - Melting temperatures: > 3000 °C
  - Application: Sustained working temperatures > 1600
    °C
  - Chemistry: Largely binary compounds of Boron, Nitrogen, or Carbon bonded with an early transition metal
- Historic and current materials of interest for leading edges, heat shields, and thermal protection systems for hypersonic and atmospheric re-entery vehicles

| 1<br>Н<br>Нудгарая<br>Интенни     |                                             | PubChem                          |                                        |                                          |                                              |                                     |                                    |                                       |                                              | (                                          | 2<br>He<br>Helan                          |                                   |                                                |                                   |                                                      |                                    |                       |
|-----------------------------------|---------------------------------------------|----------------------------------|----------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------------|------------------------------------|---------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------------|------------------------------------------------|-----------------------------------|------------------------------------------------------|------------------------------------|-----------------------|
| 3<br>Lii<br>Linna<br>Anal Vale    | 4<br>Be<br>Beryflum<br>Metro toro total     |                                  |                                        | H                                        | ydrogen                                      | Nam                                 | ie                                 |                                       |                                              |                                            |                                           | 5<br>B<br>Baron<br>Veistad        | 6<br>C<br>Carbon<br>Norrelat                   | 7<br>N<br>Ntrogen<br>Norrese      | 8<br>O<br>Crygen<br>Herrord                          | 9<br>Fisecine<br>scope             | 10<br>Neo<br>Naor 100 |
| 11<br>Na<br>Solum                 | 12<br>Mg<br>Magnesium<br>Magnesium          | Nonmetal Chemical Group Block    |                                        |                                          |                                              |                                     |                                    | 13<br>Alectron<br>Ref Teacher Hard    | 14<br>Sileon<br>Marcure                      | 15<br>P<br>Pheophorus<br>Normer            | 16<br>Softer                              | 17<br>Clippine<br>Patripe         | 18<br><b>Ar</b><br>Argon<br>Mar ta             |                                   |                                                      |                                    |                       |
| 19<br>K<br>Petessium<br>Aust More | 20<br>Ca<br>Criteium<br>Kinetie Konto Konto | 21<br>Scanduars<br>Transfer trad | 22<br>Ti<br>Titarium<br>Trevettan Mona | 23<br>V<br>Vanadium<br>Terrelitice Metal | 24<br>Cr<br>Crr<br>Crrsolum<br>Territor Ment | 25<br>Mn<br>Marganese<br>Transition | 26<br>Fe                           | 27<br>Co<br>Cobell<br>Tracester Meter | 28<br>Nicket<br>Traveline Konic              | 29<br>Cu<br>Conser<br>Technologia          | 30<br><b>Zn</b><br>2re                    | 31<br>Ga<br>Dailture              | 32<br>Ge<br>Osementum<br>Martin                | 33<br>As<br>Armenic<br>Nonice     | 34<br>See<br>Selenium                                | 35<br>Br<br>Bromine<br>Recent      | 36<br>Krater          |
| 37<br>Rb<br>Rubidium              | 38<br>Sr<br>Strotture                       | 39<br>Yutikan                    | 40<br>Zrcontam<br>Treastant Minut      | 41<br>Nbb<br>Nobium                      | 42<br><b>Mo</b><br>Moryladerati              | 43<br>TC<br>Technotium              | 44<br>Ru<br>Partiere and           | 45<br>Rh<br>Produm                    | 46<br>Pd<br>Patiadium                        | 47<br><b>Ag</b>                            | 48<br><b>Cd</b><br>Cadmium                | 49<br><b>In</b><br>149            | 50<br><b>Sn</b>                                | 51<br>Sb<br>Antimery              | 52<br>Telarlari<br>visual                            | 53                                 | 54<br>Xe              |
| 55<br>Cs<br>Cesture               | 56<br>Ba<br>Batun                           | •                                | 72<br>Hff<br>Hafniam                   | 73<br>Ta<br>Tantalum<br>Tunuttee Metal   | 74<br>W<br>Tungsten                          | 75<br>Re<br>Aberium                 | 76<br>Os<br>oumum                  | 77                                    | 78<br>Pt<br>Platnum                          | 79<br>Au<br><sub>Gold</sub>                | 80<br><b>Hg</b><br>Mercury                | 81<br>TI<br>The furr              | 82<br><b>Pb</b>                                | 83<br>Bi<br>Banuth                | 84<br>Pool                                           | 85<br>At<br>Astatione              | 86<br>Rr<br>Radon     |
| 87<br>Fr<br>Francium              | 88<br>Ra<br>Pacture                         |                                  | 104<br><b>Rf</b><br>Rutherfordiare     | 105<br>Db<br>Debnium<br>Transition Intel | 106<br>Sg                                    | 107<br>Bh<br>Bohrion<br>Transition  | 108<br>Hs<br>Hassian<br>Transition | 109<br>Mt                             | 110<br>DS<br>Dermittadfiller<br>Teacher Here | 111<br>Rg<br>Reenspecture<br>Investigation | 112<br>Con<br>Coperations<br>Transmission | 113<br>Nh<br>Nitorium<br>Hitorium | 114<br>Fl<br>Flerevium<br>Francharothere there | 115<br>Mc<br>Maconfum<br>Maconfum | 116<br>Lv<br>Liverenterium<br>Part Transferre Market | 117<br>TS<br>Tornecoline<br>Heaper |                       |
|                                   |                                             |                                  | 57<br>La                               | 58<br><b>Ce</b>                          | 59<br>Pr<br>Praseotymian<br>Lastans          | 60<br>Nd<br>Neodymian<br>Latitatik  | 61<br>Pm<br>Promotivium            | 62<br>Sm<br>Benarlan                  | 63<br>Europian                               | 64<br>Gd<br>Badolistum                     | 65<br>Tb<br>Terbian                       | 66<br>Dy<br>Dysprosium            | 67<br>Ho<br>Halinian<br>Larrania               | 68<br>Er                          | 69<br>Tm<br>Thailum                                  | 70<br>Yb                           | 71<br>Luc<br>Latelier |
|                                   |                                             |                                  | 89<br>Activities                       | 90<br><b>Th</b>                          | 91<br>Pa                                     | 92<br>U<br>Uranium                  | 93<br>Np<br>Neptunkers             | 94<br><b>Put</b><br>Putrostum         | 95<br>Am                                     | 96<br><b>Cm</b>                            | 97<br>Bk                                  | 98<br>Cf                          | 99<br><b>Es</b>                                | 100<br>Fm                         | 101<br>Md                                            | 102<br>No                          | 103<br>Lr             |



#### **UHTCs Material Properties and Fusion Plasma Facing Applications**

- Several UHTC chemistries have appealing material properties for fusion PFM applications
  - High temperature strength and thermal conductivity
  - tunable neutronic properties
  - potentially composed of low to mid Z elements
- However, uncertainties on UHTC PMI response needs to be studied prior to qualification/disqualification
  - chemical erosion processes
  - failure mechanisms at high temperatures
  - microstructural response to plasma transients



| Material         | Melting<br>Temperature (°C) | RT Flexural<br>Strength (MPa) | HT Flexural Strength (MPa) | RT Thermal<br>Conductivity (W/m-K) | HT (1000 °C) Thermal<br>Conductivity (W/m-K) |
|------------------|-----------------------------|-------------------------------|----------------------------|------------------------------------|----------------------------------------------|
| ZrB <sub>2</sub> | ~3245                       | 300 – 500                     | ~450 (800 °C)              | 60 – 105                           | ~50                                          |
| TiB <sub>2</sub> | ~3225                       | 375 – 1000                    | ~550 (1000 °C)             | 60 – 120                           | ~67                                          |
| Sintered SiC     | 2700 (sublimation)          | 325 – 400                     | 350 – 450 (1000 °C)        | ~400                               | ~80                                          |
| Tungsten         | ~3422                       | 460-600                       | ~200 (1000 °C)             | ~180                               | ~110 /23                                     |

#### **UHTCs for Sacrificial Limiters**

- Moving towards a fusion pilot plant (FPP) means means more demands on first wall (FW) blanket
  - Heat transfer and tritium breeding requirements verses just surviving
  - Stricter heat flux constraints
- Sacrificial limiters will likely be used to protect the blanket from transients
  - Limiter Drivers:
    - 1) Withstand thermal and particle loads from steady state exposures and ramp-up and ramp-down
    - 2) Following intense/unexpected transients, protect the blanket from damage extending to cooling channels





#### **Starting Materials**

- ZrB<sub>2</sub> and TiB<sub>2</sub> samples formed via reaction hot pressing
  - $MeH_2 + 2B \rightarrow MeB_2 + H_2(gas)$
  - No sintering additives used to ensure chemical purity
  - Pristine grain sizes ~3 10  $\mu$ m (TiB<sub>2</sub>) and ~ 10 30  $\mu$ m (ZrB<sub>2</sub>)





## **Proposed Magnum PSI Exposure Conditions**

- Experimental Goals:
  - 1) Analyze material surface microstructure evolution as a response to coupled steady-state and transient heat fluxes
  - 2) Determine transient load limit in diborides
  - 3) Measure erosion products in-situ and net erosion ex-situ to determine changes in erosion behavior as a response to coupled HFs
- Utilizes the pulsed plasma system in tandem with steady-state exposures
- Experimental Controls
  - Plasma composition
  - Steady-state loading conditions (~5 MW/m<sup>2</sup>, ion flux, ion energy, ion fluence)
  - Transient pulse conditions (~10 Hz, 0.25 GW/m<sup>2</sup>, 1 ms pulses)
- Experimental Variables
  - Presence of pulses
  - Number of total pulses





# Thank you for your attention



| Sample Name | Chemistry        | # of transient<br>pulses | Steady State<br>Heat Flux<br>(MW-m <sup>-2</sup> ) |
|-------------|------------------|--------------------------|----------------------------------------------------|
| TB-1        | TiB <sub>2</sub> | 0                        | 5                                                  |
| TB-2        | TiB <sub>2</sub> | 10                       | 5                                                  |
| TB-3        | TiB <sub>2</sub> | 100                      | 5                                                  |
| TB-4        | TiB <sub>2</sub> | 1000                     | 5                                                  |
| TB-5        | TiB <sub>2</sub> | 10000                    | 5                                                  |
| TB-A*       | TiB <sub>2</sub> | 0                        | 5                                                  |
| TB-B*       | TiB <sub>2</sub> | 100                      | 5                                                  |
| ZB-1        | ZrB <sub>2</sub> | 0                        | 5                                                  |
| ZB-2        | ZrB <sub>2</sub> | 10                       | 5                                                  |
| ZB-3        | ZrB <sub>2</sub> | 100                      | 5                                                  |
| ZB-4        | ZrB <sub>2</sub> | 1000                     | 5                                                  |
| ZB-5        | ZrB <sub>2</sub> | 10000                    | 5                                                  |
| ZB-A*       | ZrB <sub>2</sub> | 0                        | 5                                                  |
| ZB-B*       | ZrB <sub>2</sub> | 100                      | 5                                                  |

Desired in-situ diagnostics

- Fast IR imaging of sample surfaces
- Thomson scattering on plasma near target surface
- OES tuned to target elements

Controls (excluding \*'d samples)

- H plasma
- Pulse magnitude (0.25 GW/m<sup>2</sup>), frequency (10 Hz) and duration (1 ms)
- Steady state conditions
  - HF, ion energy, ion flux, fluence
    - 1000 °C ambient surface temperature

\*D plasma exposures with transient heat flux simulation from LASGAG system



### Planned Post-mortem Analysis

- IBA-NRA
- Mass loss measurements
  - Net erosion
- X-ray photoelectron spectroscopy (XPS)\*
  - Measures changes in areal-averaged surface chemistry/stoichiometry, indicating preferential erosion
- Scanning electron microscopy (SEM)\*
  - Examine plasma-induced microstructural evolution of sample surfaces
- SEM-based techniques: energy dispersive x-ray spectroscopy (EDS)\* and electron backscattered diffraction (EBSD)\*
  - EDS: Surface chemistry mapping to determine the presence and magnitude of preferential erosion
  - EBSD: Surface crystallographic mapping to measure changes crystallographic orientation
- Focus ion beam (FIB)\*
  - Determine damage depth
- Transient grating spectroscopy (TGS)
  - Measures surface thermal transport properties
- Thermal desorption spectroscopy (TDS)\*
  - Measures light atom retention in material
- Atomic Force Microscopy (AFM)\*
  - Measures/maps surface roughness

\*can be performed at ORNL