

TSVV4 Update and Future plans

D. Told Thrust 1 Meeting #03 — May 03, 2023

This work has been somied out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under gram agreement No 693003. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

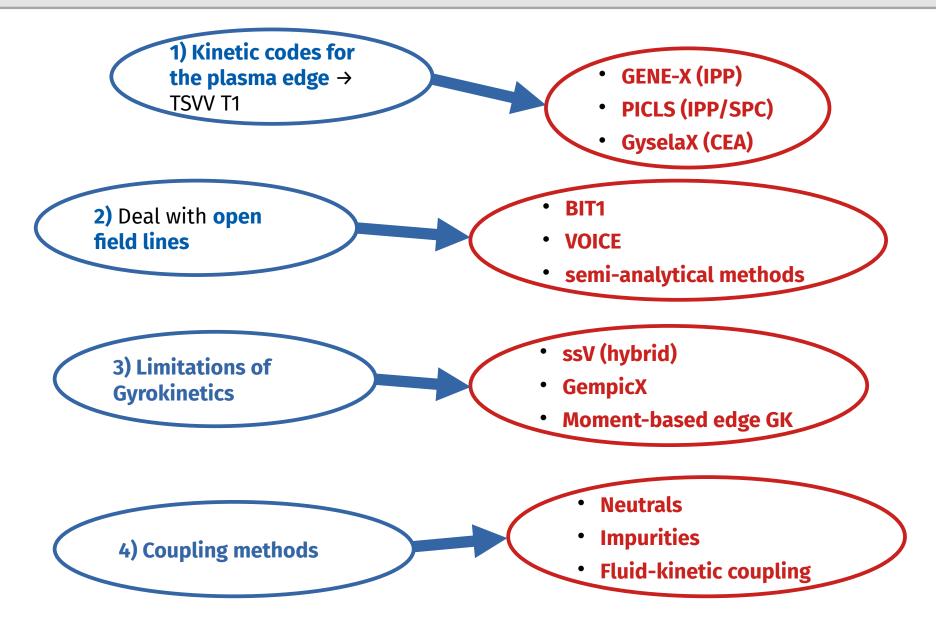
Outline

Key deliverables / Project structure

Report on 2022 activities

Daniel Told | Thrust 1 Meeting #03 | May 03, 2023 | Page 2

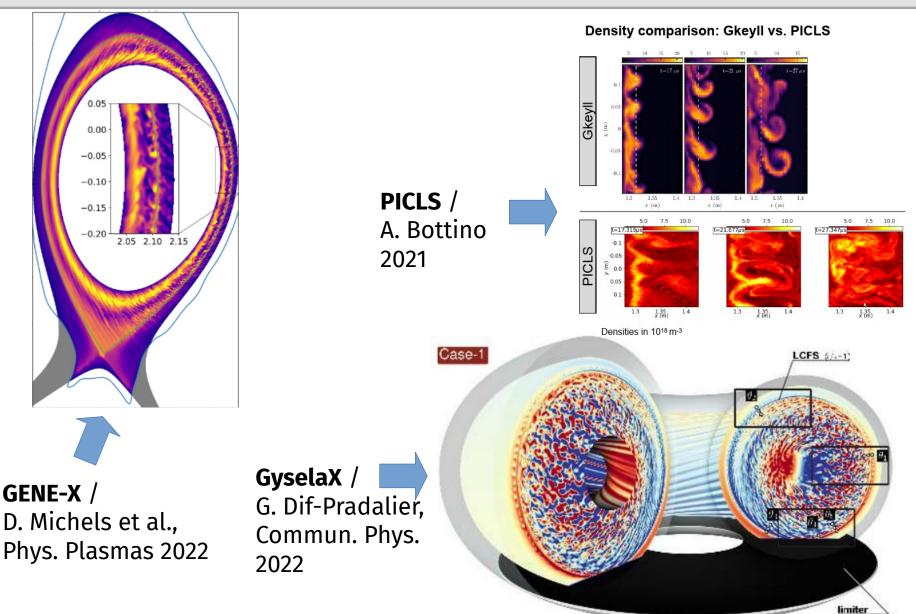
TSVV T4 Project Members



D. Told¹, A. Bottino¹, S. Brunner², L. Chŏné³, S. Costea⁴, G. Dif-Pradalier⁵, S. Ernst², B. Frei², A. Geraldini², V. Grandgirard⁵, A. Hoffmann², F. Jenko¹, J. Kovacic⁴, K. Kormann^{1,6}, D. Liu¹, J.E. Mencke², D. Michels¹, Y. Munschy⁵, M. Murugappan², A. Mustonen^{1,6}, S. Ogier-Collin¹, P. Ricci², E. Poulsen¹, Y. Sarazin⁵, M. Smedberg¹, E. Sonnendrücker¹, A. Stier¹, D. Tskhakaya⁷, P. Ulbl¹, L. Villard², S. Zeegers²

- 1) Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany
- 2) Ecole Polytechnique Fédérale de Lausanne, Swiss Plasma Center, CH-1015, Lausanne, CH
- 3) Helsinki ACH, University of Helsinki, 00014 University of Helsinki, FI
- 4) LECAD Laboratory, Faculty Of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, SLO
- 5) CEA, IRFM, F-13108 Saint Paul Lez Durance, France
- 6) Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, DE
- 7) Institute of Plasma Physics of the Czech Academy of Sciences, U Slovanky 2525/1a, 182 00, Prague 8, CZ

Setup of TSVV Task 4



Daniel Told | Thrust 1 Meeting #03 | May 03, 2023 | Page 4

Aim: GK codes for Edge + SOL

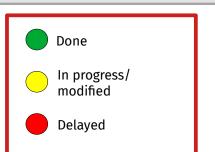
Daniel Told | Thrust 1 Meeting #03 | May 03, 2023 | Page 5

GENE-X

Implementation of a nonlinear quasi-neutrality equation

Crucial ingredient for SOL due to large density variations – implemented and tested via MMS

GyselaX


Experimentally relevant heat sources

Delayed due to continued focus on immersed sheath boundary condition – fully kinetic studies with VOICE

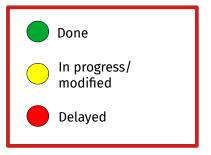
PICLS

Delta-f to full-f transition studies, open vs-closed field line regions in simple geometry

Transition studies have been carried out in ORB5, with open/closed field line applications soon to follow

Ab-initio sheath studies

- Performing new simulations for ITER SOL and providing the boundary conditions → see highlights
- First simulation of **full DEMO SOL** with fully resolved sheath


Immersed boundary sheath studies

Impact of non-Maxwellianity of Fws **on SOL properties** in VOICE

Additionally: Studied role of source/sink terms + collisions on sheath potential and heat transmission

Analytical sheath studies for gyrokinetic systems

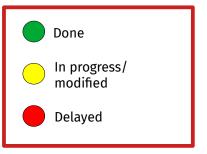
Extension of sheath model for treatment of multiple ion species Additionally: auxiliary code for non-grazing magnetic field (due 12/24) completed

Exploring the limits of Gyrokinetics

Evaluate high-frequency behavior of hybrid kinetic driftkinetic system, determine time step requirements for tokamak edge parameters (ssV)

Lower-hybrid wave important for timestep $\rightarrow \Omega_{ci} \cdot \sqrt{(m_i/m_e)}$

Introduce **tokamak geometry** capability (ssV)


Delayed due to additional work required on numerical schemes (see highlights) – first steps taken, but interfaces still missing

Implementation of drift-kinetic electrons (GempicX)

Implementation of customizable sources and sinks of particles, momentum and energy (GempicX)

Delayed due to unexpected loss of personnel

Coupling to neutral and impurity physics

- Implement a constant-in-time particle source featuring the minimal properties of the one expected from neutrals
- Selection of existing test cases for a realistic guess of neutral particle sources
- Identify bottlenecks of main code implementations regarding impurity physics

Exploring the gyrokinetic moment hierarchy

Implement full nonlinear model in a two-dimensional simple geometry (Zpinch or linear machine)

Further activities

Dissemination (as of AR 2022):

• 4(+2) papers, 3 invited talks, several talks + poster presentations

ACH:

- GyselaX project underway at EPFL hub
- **GENE-X** project underway at BSC hub
- Applied math project at EPFL hub (gyro-moment code)

Meetings:

- Monthly member meetings
- Dedicated **sheath subgroup** meets every few weeks
- Visit by A. Geraldini to IPP on sheath physics
- Second annual in-person meeting in Garching planned for mid-June – will have shared session(s) with TSVV3

Milestones for 2023

GENE-X

Implementation of electromagnetic effects

GyselaX

• Solving Poisson in 2D (target = arbitrary geom.)

PICLS

• EM effects and improved edge GK

Ab-initio sheath studies

Finishing all proposed DEMO SOL simulation cases

Immersed boundary sheath studies

• Implementation of immersed boundary with kinetic electrons in GyselaX

Analytical sheath studies for gyrokinetic systems

• Investigation of turbulent gradient effects on sheath physics

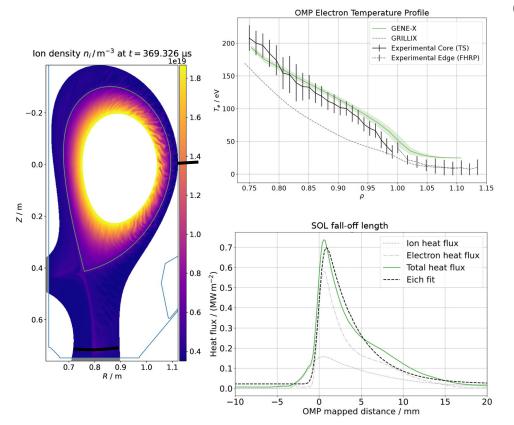
Exploring the limits of Gyrokinetics

- Introduce nonlinear solvers for field equations (ssV)
- Implementation of advanced boundary conditions: logical BC, and EM waves source at the boundary (GempicX)

Coupling to neutral and impurity physics

- Implementation and testing of neutral physics source terms in at least one code
- Enable internal impurity species treatment in main codes

Exploring the gyrokinetic moment hierarchy


• Generalization to a 3d geometry (linear or with constant curvature, such as in the simple magnetized toroidal plasma configuration).

Validation of GENE-X in TCV

Simulations enable accurate reproduction of key experimental observables in TCV

Code validation vs. "TCV-X21" open dataset

• Simulations reproduce key aspects of the experiment

Left: green vs. black lines

• Divertor heat flux fall-off follows Eich-fit function, match improves with collisions

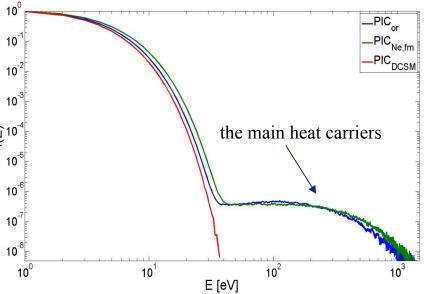
SOL fall-off length λ_q : **Experiment 5.5 mm**

Fluid Models			GENE-X (Gyrokinetic)		
GRILLIX	1.1	mm	No Coll	1.34	mm
GBS	11.6	mm	Coll BGK	4.68	mm
ТОКАМЗХ	0.1	mm	Coll LBD	3.75	mm

[P. Ulbl et al., APS invited talk (2022) + PoP (accepted), 2023]

Simulation of ITER inter-ELM SOL

Two new sets of ITER SOL simulations have been performed:

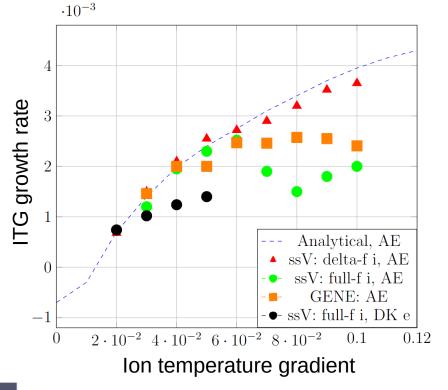

- including higher ionized states of Ne⁺ⁱ (up to i=6)
- including Dressed Cross-Section Model (DCSM). The 10⁻³ DCSM [1] does not apply the coronal approximation and takes into the account millions of possible ^{10⁻⁴} atomic transitions.

No significant influence of the applied model on the plasma profiles has been found, but on the electron power loads to the divertor

q _e [MW / m²]	Original	With Ne ^{+i < 7}	With DCSM
ID / OD	3.7 / 15.7	7,2 / 13.2	0.9 / 0.9

The explanation of these results is the following: the main heat carriers to the divertors are the superthermal non-Maxwellian collisionless electrons originated from the upstream SOL, which **are absent in the DCSM**.

[1] D. Tskhakaya, Europ. J. Phys. D, submitted for publication (2023)



Electron energy distribution function at the ITER outer divertor sheath entrance from different SOL models. "or" denotes the original model including only up to the 5th ionized states of Ne

Full-f hybrid-kinetic ITG runs using ssV

- Challenge in simulating low-frequency physics with full kinetics: Numerical dissipation
- Settled on 5th order flux-conserving scheme with SLMPP limiter to allow ITG modes to develop
- Successfully reproduced ITG physics in full-f setting and found agreement with GENE (global slab)
- New challenge: are differences at higher gradients physical (=non-GK?) or numerical?

Ion density fluctuations in \perp plane

T4 codes making progress.

What about delivery to TSVV Task 1?

Specific questions can be studied already now, but some important physics still lacking:

- Correct sheath physics
- Neutrals

Also keep in mind: Edge/SOL studies will usually be global, nonlinear → expensive!

T4 codes making progress.

What about delivery to TSVV Task 1?

Specific questions can be studied already now, but some important physics still lacking:

- Correct sheath physics
- Neutrals

Also keep in mind: Edge/SOL studies will usually be global, nonlinear → expensive!

Thank you for your attention!