

Update and Plans IFPILM

I. Ivanova-Stanik, V. Pericoli Ridolfini

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Plan for 2023

<u>2022</u>

Simulations of LD (Li, Sn) for DEMO-QH version 2019 with COREDIV and TECXY code

In report was presented analysis for only Sn, but we continue the work for Li. Simulation for Li was prepared.

<u>2023</u>

15th International Symposium on Fusion Nuclear Technology (ISFNT-15), 10-15.09.2023

V. Pericoli Ridolfini et al., On the compatibility of liquid metal divertor targets with the EU-DEMO performances

Plan for 2023

PRD-9.INT.01-T011-D001: Numerical evaluation of LM-CPS performance in COMPASS-U

Starting to collaboration with Jan Horacek and F. Jaulmes

Preparing numerical analysis applied to COMPASS Upgrade simulated discharge by Fiesta+METIS [1] and the plasma-liquid-divertor interaction by HeatLMD [2] for case $B_t = 2.5 \text{ T}$, $I_p = 0.8 \text{ MA}$ using the COREDIV code, which self-consistently solves 1D radial transport equations for plasma and impurities in the core region and 2D multi-fluid transport in the SOL.

- 1. F. Jaulmes et al., *Modelling of charge-exchange induced NBI losses in the COMPASS upgrade tokamak,* Nucl. Fusion **61** (2021) 046012 (18pp) presented different scenarios for COMPASS-U
- 2. J. Horacek et al Phys. Scr. 96 (2021) 124013

Aim of the simulation

Aim answer the questions:

- How much is Li and Sn concentration?
- How much Li and Sn influenc of the W sputtering?
- What is the Z_{eff} and radiation profiles?
- How much radial tranport in SOL influence of the global plasma parameters?

Figure 2. Left: Cross-section of the COMPASS-U tokamak with the LMD target at the bottom. Right: The CPS LMD target in divertor. Inserting just 1 cm deeper implies $15 \times$ steeper incident angle than on the surrounding tungsten tiles. The evaporated Li/Sn condensates at nearby PFCs kept at 350° C- 500° C. Li then many times evaporates and redeposits until it finally condensates at a dedicated room-temperature plate in the private flux region. Since Sn doesn't evaporate at such a low temperature, sputtering e.g. by Argon glow discharge is considered.

J. Horacek et al Phys. Scr. 96 (2021) 124013

Irena Ivanova-Stanik| PRD-LMD Kick-off |20.03.2023 | Page 4

Simulation for # 3210 with P_{aux} = 2 MW

The simulation are prepared for COMPAS configuration –scenarios A.

PARAMETERS	
Toroidal radius: R [m]	0.9
Plama radius: a [m]	0.27
Plasma currents: I _p [MA]	0.8
Toroidal Mag. Field: B _T [T]	2.5
Elongation	1.7
Electon density: <n<sub>e>vol[x10²⁰m⁻³]</n<sub>	0.815
Auxiliary heating: P _{aux} [MW]	2.0

We assuming: $n_e^{sep} = 0.35 < n_e >_{vol}$ $H_{98} = 1.0$ $R^{recyc}_{Li,Sn} = 0.1$ $D_{SOL} = 0.5 \text{ m}^2/\text{s}$ W divertor

Choice of impurities

- Self consistent simulations with 3 impurities:
 - $\circ \quad \mbox{C-fixed source at midplane, chosen} \label{eq:chosen} to \mbox{ fit } Z_{eff} \mbox{ (} Z_{eff} \mbox{ = 1.3)} \label{eq:chosen}$
 - Li, Sn fixed source at divertor plate
 - W from sputtering (all ions)
- The radiation and Z_{EFF} levels fitted simultaneously

Irena Ivanova-Stanik| PRD-LMD Kick-off |20.03.2023 | Page 5

Simulation for # 3210 with P_{aux} = 2 MW

$\begin{array}{c} 2,0 \\ \# 3210 \\ 1,5 \\ 1,0 \\ \mu^{\circ} \\ 0,5 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,2 \\ 0,4 \\ 0,6 \\ 0,6 \\ 0,8 \\ 1,0 \\ 0,0 \\ 0,6 \\ 0,8 \\ 1,0 \\ 0 \\ 0,0 \\ 0,0 \\ 0,1 \\ 0,0 \\ 0,$

<u>2023</u>

15th International Symposium on Fusion Nuclear Technology (ISFNT-15), 10-15.09.2023

or

PLASMA 2023

International Conference on Research and Applications of Plasmas, 18-22.09. 2023

