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Institute of Physics University of Latvia (IPUL) specializes in
Magnetohydrodynamics research

IPUL main work in Eurofusion program
*Evaluation of thermoelectromagnetic effect in liquid metal CPS
*Investigation of MHD flows in capillary porous systems

[PUL designed and produced permanent magnet IPUL alkali metal hall with 125 mm
induction pump

Liquid metal: Pb-Li
APax=6.5 bar
-
Tui350" €
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Outlook for the IPUL tasks in 2022

Electric current effects on LM flow

Work in 2022 :

- Experiments with different current values and orientation and magnetic field O-
5T

- Measured values: flowrate, pressure difference and magnetic field

- Free surface visualisation

Thermoelectric effect quantification

-Experimental study of thermoelectromagnetic effect in Co-GaSnin system(measure

temperature distribution and liquid metal flow)

-Complete numerical model (Electric current, temperature, flow and surface

deformation)

-Analythical description and similarity with realistic W-Sn system



Themoelectric (TE) effect in divertor CPS

liquid phases

W and liquid Sn CPS system, TE force may appear at the nonisothermal interface between solid and

e Calibration experiment is developed to quantify the thermoelectromagnetic convection in liquid

metals in small scale.

TEcurrent TE force

|:> Coolant flow | > grad (T)
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Comparison of characteristic values of model and CPS:
Cobalt-Gallium (AS=30 pV/K, 0=2 MS/m, 6=3 K/mm, B=0.2 T
Tungsten-Tin (AS=10 puV/K, 6=2 MS/m, 6=10...100 K/mm, B=1..5T)

F~oc-AS-0-B
Local Thermoelectric force can be higher than in experiment. It is

shown that TE force will push the liquid metal away from the
hottest zone.
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Thermoelectric current density if nonhomogeneous heat flux is
applied. a, b-temperature profiles along plasma/CPS surface, c,d-

temperature profile, e,f-calculated thermoelectric force density.
F=30kN/m?3 is larger than gravity Fg=pg=6kN/m?>




Planned experiment
Sce=-20 PV/K, S,;=-0.3 uV/K, AT=200 K, L=4 cm, B=0.5 T, 0¢,= 15 MS/m, 05,=2 MS/m
TE voltage U=AS:AT=1e-3 V Current density: j=Uc/L=2e5 A/m?
TE force density: f=jxB=1e5 N/m3 Gravity: fo,=pg,8=7€4 N/m?3

This simple order of magnitude estimation shows that even with low magnetic field and moderate thermal
gradient it is possible to achieve force density larger than gravity. This experiment would allow to verify how the
liquid metal is pushed away from the hot zone by thermoelectric forces and compare the result with numerical
models and analytical calculation.

/ Thermoelectric current

Numerical model confirms the analythical
calculations.

| e

Heat Flow
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Thermoelectric magnetic flow experiment for liquid metal divertor studies

Liquid metal (InGaSn) container has three cooled
copper walls and one cobalt wall. Along the cobalt wall
temperature profile is imposed by electric heater.
External magnetic field B=0.2 T is applied by permanent
magnet assembly.
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Heat flow




Numerical simulation results
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Main dimensionless numbers
cm Re = put (Inertia/viscous), Pe; = L,:l (conduction/convection),
Re~2220,Pe;,~6,N~26,7 = ~3 — 5— # ey
B?Lo .. :
N = p (Electromagnetic/inertia) :
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MHD flow in porous media

Experiments with 3D printed non-
conductive test section with InGaSn
in magnetic field up to 5T.
Simulations with ANSYS Fluent with
MHD module Potential formulation,
models with ideally conductive and
non-conductive solid matrix,
Re=0.01<<1.

Overlaping (1/10) sphere model

SC pore model — solid matrix and
pore space 1 unit size cube

R=0.5 R=0.55



Test section (3D plinted non-conductive, R=6 mm)

P1 P2

g /Test section
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o

LM Flow

50mm

| T T

P1, P2-pressure sensors, Flowrate sensors, can be placed
in supermagnet (0-5 T)
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Experimental setup
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Experimental setup
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Electric current effects on LM flow

| Work in 2022 :

| - Test section upgrade with pins
P 1—_’}& i ZZZZZZZZZZzzzﬂ #\\ ‘4 2 . .
| TR HC\ : for applying electric current

- Incorporating current source

/Pin 2 - Modifying liquid metal loop

.o
- Implementing new adata
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-—P 2 channels in NI system
z*zzz%%zz%zz%«H .
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e - Updating LabView software

- Preliminary experiments
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Test section (TS) with current electrodes
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Free surface changes in magnetic field

Small flowrate/magnetic field

B=0-2.5-0T
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COMSOL VOF results for simplified geometry without magnetic field
i Time: 0.405
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Results and interpretation (P-Q curves in various regimes)
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dP ~ Q1046
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Models of two-phase flow in pore space

Real geometry Real geometry 3D model

B,=2T, Q=10ml/s and 25 ml/s
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Conducting walls case (induced/imposed current can go through the solid phase)

Xy’
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Hartman flow with conductive and non-conductive walls
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Miller, U. and Bihler, L. (2001). Magnetofluiddynamics in Channels and Containers. Springer, Wien, New York. ISBN 3-540-41253-0.
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Further work (2023 and beyond)

Experimental study of TEMC processes in simplified/scaled systems

Numerical modeling of TEMC processes in test/realistic geometries

Modify MHD flow in CPS experimental setup for reliable placements of current supplying
electrodes and pressure measurements

Further development of two-phase free surface simulation models for:
e Quantitative interpretation of hydraulic experiments results
e Qualitative interpretation of CPS heat transfer testing experiments

Study of the MHD flow at different wall/matrix conductivities
3D printed CPS systems

Thank You for attention !
Imants Kaldre (imants.kaldre@lu.lv)
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