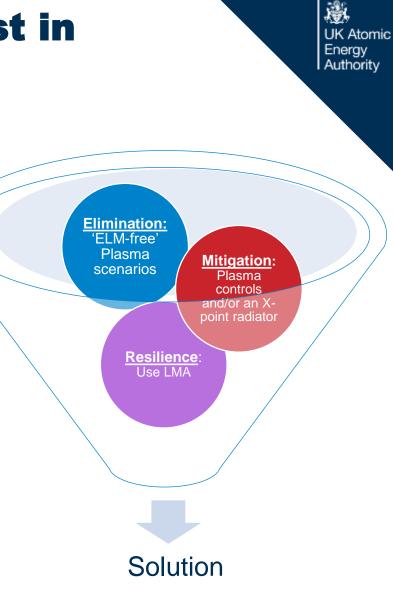
UK Atomic Energy Authority

UKAEA-STEP

STEP Liquid Metal Armour Overview

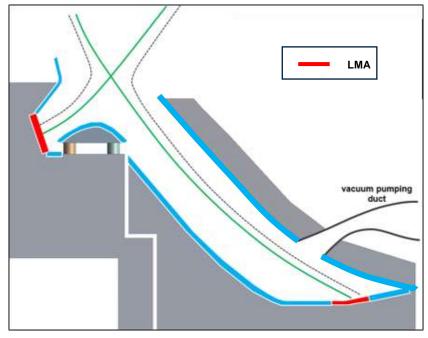

Jaime Farrington and Alan Barth

EUROfusion LMD Kick-off Meeting - 20 March 2023

CD-STEP-40098

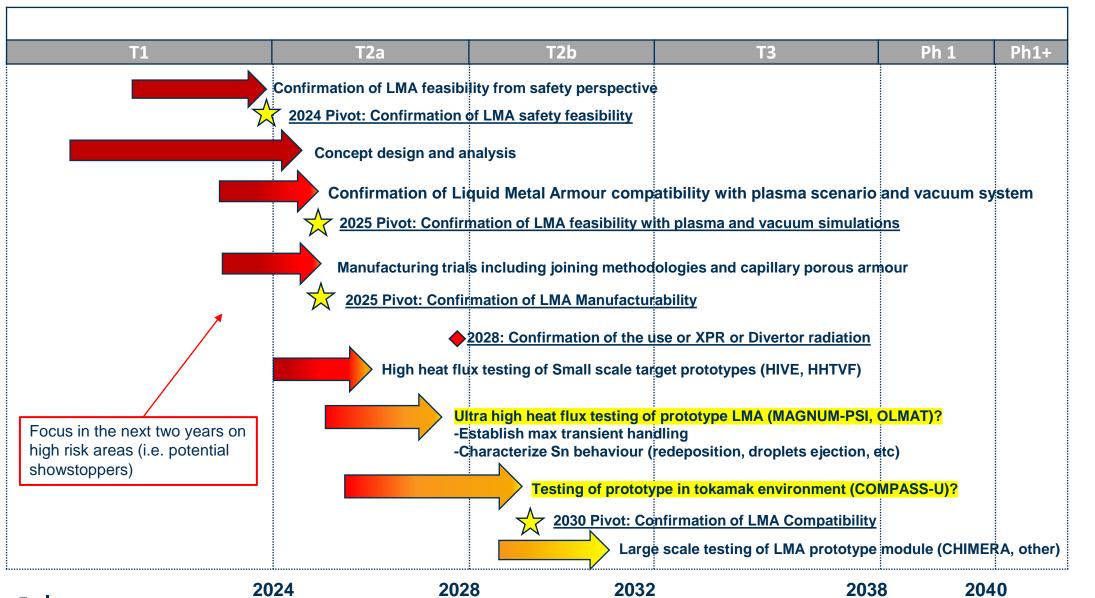
Background to STEP programme's interest in Liquid Metal Armours

- □ The main goal is to deliver the STEP Prototype Powerplant (SPP) by 2040.
- Long term powerplant operations are key to demonstrate commercial feasibility.
- Large power transients, in particular Edge Localized Modes (ELMs) pose risk to long term divertor operations, thus power plant operations.
- Sn Liquid metal armours (LMA) along with other approaches gives us the best chance to achieve long term divertor operations for the SPP.
- □ There are other areas in which LMA could be applied such in Limiters.
- Development of LMA needs to be accelerated in order to be feasible for STEP.


STEP Divertor – LMA placement

The STEP Divertor will use LMA at the strike points:

Balance to be found between maximising coverage to 'catch' all transient loads, but minimising coverage to reduce evaporation/contamination concerns


UK Atomic Energy Authority

• Further refinement required

Indicative LMA placement for STEP

STEP Liquid Metal Armour Preliminary Roadmap

Areas of common interest with EU DEMO

- □ CPS manufacturing
- □ CPS Joining to heat sinks
- □ PFC design
- □ Capillary flow, particularly MHD/TEMHD effects
- □ Sn handling and safety
- □ Sn effect on plasma (e.g. transport to the core, droplet ejection)
- □ Sn effect on vacuum systems
- □ Plasma surface interactions (e.g. droplet ejection, hydrogen retention etc)
- LMA placement
- □ LMA integration
- Simulation of LMA performance and experimental benchmarking (e.g. vapour shielding, transport to plasma core)

灣

UK Atomic Energy Authority

□ Testing of LMA in a Tokamak environment

Potential ways to work together

UK Atomic Energy Authority

STEP

•Resources to accelerate development (e.g. design, manufacturing, simulation).
•System Integration work (e.g. LMA tin supply)
•System Lifecycle assessment (operations, maintenance and waste in powerplant)
•Safety assessments – (e.g. Tin handling, tin/water (steam) interactions)
•Testing facilities (e.g. CHIMERA and HIVE)
•Development of supply chain
•Raise profile of LMA

EUROFUSION

Advanced LMA target development

•Manufacturing of CPS

Plasma transport simulations

•Testing facilities (e.g. OLMAT, COMPASS-U, GLADIS)