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Full-f and 𝜹𝒇 gyrokinetic particle simulations of 
Alfvén waves and energetic particle physics
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[Lu, et al, Plasma Phys. Control. Fusion, 65, 034004 (2023)]



(Mixed 𝜹𝒇)-full 𝑓 scheme electromagnetic particle models

• Mixed variables/pullback scheme in full 𝑓

• Marker loading using constants of motion in full 𝑓 model

Full 𝒇 nonlinear collision operator using Rosenbluth potential

Field-aligned finite element method for multiple-𝑛 nonlinear simulations

Connection & possible contribution to TSVV10 from TRIMEG
(previously/currently participated in TSVV8)
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Recap: Triangular mesh based gyrokinetic code

Structured mesh

3

• Unstructured mesh

GTC,GTS,GEM

MEGA, HMGC

LIGKA, HAGIS

NOVA, JOREK

STRUPHY

TRIMEG-GKX

XGC, M3D(-C1)

TRIMEG-C0/C1



Recap: Development of TRIMEG code and Physics studies

4

Before 2019:electrostatic model, explicit 

scheme, 𝛿𝑓(low noise, fast), (R,Z) coordinate, 

unstructured mesh, mixed particle-in-cell-

particle-in-Fourier

[Z.X. Lu, Ph. Lauber, T. Hayward-Schneider, A. Bottino, M. 

Hoelzl, Phys. Plasmas , 26, 122503 (2019)]

2019-2021:electromagnetic, implicit scheme, 

full 𝑓, “eXtended” to structured mesh in a 

test version, realistic mass ratio, multiple 

species

[Z.X. Lu, G. Meng, M. Hoelzl, Ph. Lauber, Journal Comput. 
Phys. 440 (2021) 110384]

• Numerical improvement
• High order finite element in both 

structured/unstructured meshes

• Control Variate and noise reduction

Recent work

• Chen, Zonca et al. GK-E&B

• GK-E&B is a powerful model 
suitable for multi-scale 
physics

• Test in TRIMEG shows GK-
E&B’s capability for small 𝑑𝑒

TRIangular MEsh based Gyrokinetic code

[Rosen, Lu, Hoelzl, Phys. Plasmas, 022502 

(2022)]

[Lu, Meng, Hatzky, Hoelzl, Lauber, PPCF 

(2023)]

• Physics studies related 
to AUG, benchmark 
with LIGKA, HMGC

[Meng, Lauber, Wang, Lu, 

Plasma Science Tech 025101 

(2022)]

• Neoclassical physics
• Electron transport, bootstrap current

• Neoclassical 𝐸𝑟

[L. Rekhviashvili, master thesis, TRIMEG-C0]

Aiming for physics studies with X point, EM and kinetic electrons

https://aip.scitation.org/doi/10.1063/1.5124376
https://www.sciencedirect.com/science/article/pii/S0021999121002795?via%3Dihub


Recap: ITG simulations in TRIMEG

ITG mode is simulated in the whole plasma 

volume

• Experimental magnetic equilibrium

• Analytical density, temperature profiles

• Dominant terms in equations of motion

• Linear/nonlinear ITG simulations 

demonstrate the capability of the 

unstructured mesh in treating the whole 

plasma volume

[Z.X. Lu, Ph. Lauber, T. Hayward-Schneider, A. Bottino, 

M. Hoelzl, Phys. Plasmas , 26, 122503 (2019)]

5

Linear Nonlinear

https://aip.scitation.org/doi/10.1063/1.5124376


Full 𝒇 simulations of Alfvén waves and energetic particle physics

Origin of the challenge in gyrokinetic electromagnetic simulations

• 𝒗∥ form: 𝝏𝜹𝑨∥/𝝏𝒕 needs implicit treatment.     
𝑑𝑣∥

𝑑𝑡
= − 𝒃 ⋅ 𝛻𝛿𝜙 +

𝜕

𝜕𝑡
𝛿𝐴∥ ; 𝛁⊥

𝟐𝜹𝑨∥ = 𝑪𝑨𝜹𝒋∥,𝒗∥

• 𝒑∥ form: Cancellation problem (for 𝛁⊥
𝟐 <

𝟏

𝒅𝒆
𝟐).   

𝑑𝑝∥

𝑑𝑡
= −𝒃 ⋅ 𝛻(𝛿𝜙 − 𝑣∥𝛿𝐴∥); (𝛁⊥

𝟐 −
𝟏

𝒅𝒆
𝟐)𝜹𝑨∥ = 𝑪𝑨𝜹𝒋∥,𝒑∥

• In full 𝒇 scheme, high noise, synergy from neoclassical physics bring in more challenges

4 / 1 7 / 2 0 2 3 6

Full 𝑓 Direct 𝜹𝒇 Traditional 𝜹𝒇

𝑣∥ Implicit: Lu21JCP Implicit: Sturdevant

19APS/21POP, XGC

𝑝∥ Exercise in 2021 (good in 

filter-free capability; full f)

Hatzky19 Mishchenko04/05; 

Bottino11, Hatzky19, 

this work

Mixed variable/Pull 

back

this work; 

XGC (Hager2022)

Hatzky19; TRIMEG 

exercise in 2021

Mischchenko18,

Cole21 (XGC), 

Hatzky19, this work

𝑝∥ = 𝑣∥ +
𝑞𝑠
𝑚𝑠

𝛿𝐴∥



Recent work: explicit scheme, full 𝒇 and 𝜹𝒇 on the same 
footing

Focus on 𝒑∥ form, instead of 𝒗∥ form

Noise reduction in full 𝒇 or mixed 𝜹𝒇-full 𝒇 schemes

Good description of energetic particles in full 𝒇 simulations

Essence of the constant of motion in EP description: PSZS (phase space zonal structure)

4 / 1 7 / 2 0 2 3G K - C 1 7

[Zonca et al, New J. Phys. 17, 013052 (2015)

Falessi et al, Phys. Plasmas, 26, 022305 (2019)

[Lu, Meng, Hatzky, Hoelzl, Lauber, PPCF (2023)]



Gyrokinetic model with mixed variables: 𝛿𝐴∥ = 𝛿𝐴∥
s + 𝛿𝐴∥

h, 𝑢∥ = 𝑣∥ +
𝑞𝑠

𝑚𝑠
𝛿𝐴∥

h

1. Quasi-neutrality equation: −𝛻 ⋅
𝑞𝑠𝑛0𝑠

𝐵𝜔c𝑠
𝛻⊥𝛿𝜙 = σ𝑠 𝑞𝑠𝛿𝑛𝑠

2. Parallel Ampere’s law: 𝛻⊥
2 − σ𝑠

1

𝑑𝑠
2 𝛿𝐴∥,0

h = −𝛻⊥
2𝛿𝐴∥

s − 𝜇0𝛿𝑗∥

3. Iterative Ampere solver: 𝛻⊥
2 − σ𝑠

1

𝑑𝑠
2 𝛿𝐴∥,𝑝

h = σ𝑠
𝐺𝑠

𝑑𝑠
2 −

1

𝑑𝑠
2 𝛿𝐴∥,𝑝−1

h , 𝑝 = 1,2, …

4. Ohm’s law: 𝜕𝑡𝛿𝐴∥
s + 𝜕∥𝛿𝜙 = 0

5. Fourier filter (Particle-in-Fourier for moment, matrix inverse for field)

6. Guiding center’s equations of motion, weight equation for 𝛿𝑓& full 𝑓 also derived

7. Reduction to pure 𝑝∥ form (improved): 𝛿𝐴∥
s = 0

The mixed variable/pullback scheme and the iterative 𝒑∥
scheme
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• Goal:𝛁⊥
𝟐𝛿𝐴∥

h −σ𝑠
𝐺𝑠

𝑑𝑠
2 𝐴∥

h

= −𝛻⊥
2𝛿𝐴∥

s − 𝜇0𝛿𝑗∥ ;

•
𝐺𝑠

𝑑𝑠
2 𝐴∥

h: accurate adiabatic part

• 𝐺𝑠 → 1 in analytical limit

• MV-PB implemented for 𝛿𝑓 (Mishchenko et. al.); 

• Full 𝑓 MV-PB discussed in Hatzky19; not implemented before (XGC: simplified w/o iterative Ampere’s law, Hager2022)



Discretization from marker to physical distribution: 
full 𝑓 versus 𝜹𝒇

Full 𝒇 scheme

For 𝑁 markers with given distribution 𝑔(𝒛), 

where 𝒛 = (𝑹, 𝑣∥, 𝜇) is 5D phase space 

coordinates

The physical distribution 𝑓(𝒛, 𝑡) is represented 

as

where 𝑃𝑡𝑜𝑡 𝒛, 𝑡 =
𝑓 𝒛,𝑡

𝑔 𝒛,𝑡
=

𝑛𝑓

𝑛𝑓 𝑉

𝑛𝑔 𝑉

𝑛𝑔

𝑓𝑣

𝑔𝑣

[Z Lu, G Meng, R Hatzky, M Hoelzl, P Lauber, PPCF(2023)] & refs. 

Therein; also in PICLS, Boesl, Bottino et al

𝜹𝒇 scheme: summarized in ORB5 work [Lanti19] 

With decomposition 𝑓 = 𝑓0 + 𝛿𝑓

where 𝑃 𝒛, 𝑡 =
𝑓0 𝒛,𝑡

𝑔 𝒛,𝑡
,𝑊 =

𝛿𝑓 𝒛,𝑡

𝑔 𝒛,𝑡

Weight equations

[Lanti et al. Computer Physics Communications, 251, 

107072 (2019)]

https://www.sciencedirect.com/science/article/pii/S0010465519303911?via%3Dihub


Different expressions of mixed variables/pullback scheme for full 𝒇 and 𝜹𝒇

• Goal:𝛁⊥
𝟐𝛿𝐴∥

h − σ𝑠
1

𝑑𝑒
2 𝛿𝐴∥

ℎ = −𝛻⊥
2𝛿𝐴∥

s − 𝜇0𝛿𝑗∥

The parallel Ampere’s law is solved iteratively

𝛁⊥
𝟐 −

𝑠

1

𝑑𝑠
2 𝛿𝐴∥,0

h = −𝛻⊥
2𝛿𝐴∥

s − 𝜇0𝛿𝑗∥,𝑢

𝛁⊥
𝟐 −

𝑠

1

𝑑𝑠
2 𝛿𝐴∥,𝑝

h = −

𝑠

1

𝑑𝑒
2 𝛿𝐴∥,𝒑−𝟏

𝐡 +

𝑠

1

𝑑𝑒
2 𝛿𝐴∥,𝑝−1

ℎ

for 𝜹𝒇 model:       〈𝛿𝐴∥,𝑝−1
ℎ 〉 =

2

𝑛0𝑣𝑡𝑠
2 ∫ 𝑑𝑧

6𝑣∥
2 𝛿𝐴∥,𝑝−1

ℎ 𝛿 𝑹 + 𝝆 − 𝒙 𝑓0, 

for full 𝒇 model:   〈𝛿𝐴∥,𝑝−1
ℎ 〉 =

1

𝑛0
∫ 𝑑𝑧6 𝛿𝐴∥,𝑝−1

ℎ 𝛿 𝑹 + 𝝆 − 𝒙 𝑓, 

Key idea: noise cancels noise

Rigorously speaking, this correction is crucial;  
−1

𝑛0
∫ 𝑑𝑧6𝑣∥

𝜕ln𝑓0

𝜕𝑣∥
… ≠

1

𝑛0
∫ 𝑑𝑧6 𝛿𝐴∥,𝑝−1

ℎ 𝑓 …

Mixed variable/pullback scheme for full 𝒇 and 𝜹𝒇 models
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Ref.: derivation of sympletic/adiabatic 

current in Hatzky19



TRIMEG-GKX: demo (simplified) code with circular geometry 
TRIMEG-C1: mixed spline-unstructured mesh for realistic geometry

• Software engineering: MVP (minimum viable 

prototype)  bigger code

• Analytical ad-hoc equilibrium, spline in 3 directions, 

full 𝑓 & 𝛿𝑓, mixed variable & pullback

• Structures: particle and field on the same level

• TRIMEG-GKX: ~6000 lines in Fortran; ~5000 lines in 

Matlab

• Similar structures except MPI, solver, visualization

• TRIMEG-C1: ~8000 lines (kernel) in Fortran

• Field solver: PETSC; w/ particle decomposition; w/o 

domain decomposition (shared memory for field)

equilibrium 3d FEM

field particle

Field_ext Particle_ext

gkem2sp

solver

Solver_ext

Other applications



Results: TRIMEG-GKX (pure cubic spline; ad-hoc equilibrium)
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The growth rate and the mode structure agree with previous results [Koenies18NF]

• 𝜹𝒇 scheme for all 3 species; realistic mass ratio (
𝒎𝒊

𝒎𝒆
= 𝟏𝟖𝟑𝟔)

Benchmark of ITPA-TAE case: reasonable agreement

F U L L F,  𝛿𝑓 E M  G K  E PM A X - P L A N C K - IN S TITU T F Ü R P L A S M A PH YS IK |  Z . L U |  A P R IL  2 0 2 3 1 3



Full 𝑓 EPs, 𝛿𝑓 electrons & thermal ions:

more efficient

Full 𝑓: growth rate ~40% lower than the 𝛿𝑓

results, if local Maxwellian distribution is 

used

EP gradient (
dln𝑛

d𝑟
) relaxes for ~40% for 

𝑇EP = 400 keV

Mixed full 𝒇–𝜹𝒇 simulations
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Full 𝑓 EPs 𝛿𝑓 EPs 



EP distribution in Constants of Motion (COM) space: 𝑓(𝜓cs, 𝐸, Λ)

• Shifted canonical toroidal momentum:

𝜓𝑐𝑠 = 𝜓 +
𝑚𝐹

𝑞𝐵
𝑣∥ − 𝑠𝑖𝑔𝑛 𝑣∥ 2 𝐸 − 𝜇 𝐵0

𝑚𝐹

𝑞𝐵0
𝐻(𝐸 − 𝜇 𝐵0)

• ψcs describes the radial location of orbit center

Local Maxwellian EP distribution is not a good approximation, especially when EP energy is 

high and for full 𝑓

• In 𝛿𝑓 simulations, the EP distribution can be forced to be Maxwellian analytically; but the marker 

distribution will deviate from its initial one if markers are not loaded in constants of motion space

Full 𝒇 EP simulations with constant of motion EP distribution
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• Scheme 1: Load markers in constant of 

motion space, uniformly distributed along 

the ignorable angle

Two ways of starting full 𝒇 simulations from stationary 
distributions
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• Scheme 2: Load markers with a chosen 

distribution, modify 𝑓/𝑔 (𝑓, 𝑔: particle or marker 

distribution), so that the physical distribution is 

stationary in constant of motion space (this work)

• 𝑓 =
𝑁

𝑁𝑝
σ𝑝

𝑤𝑝,𝑡𝑜𝑡

𝐽
𝛿 𝑹 − 𝑹𝒑 𝛿 𝒗∥ − 𝒗∥𝒑 𝜹(𝝁 − 𝝁𝒑)

• 𝑤𝑝,𝑡𝑜𝑡 = 𝑓/𝑔; 𝐽: Jacobian

• 𝑔(𝑟, 𝜃, 𝑣) =
𝑁𝑝

𝜋3/2𝑣𝑡ℎ
3 𝑉𝑡𝑜𝑡

𝑅0

𝑅
𝑒−

𝑚𝑣2

2𝑇 ; uniform along 𝑅, 𝑍, 𝜙

• 𝑓 = 𝑓 𝜓𝑐𝑠 , 𝑣 =
𝑛(𝜓𝑐𝑠)

𝜋3/2𝑣𝑡ℎ
3 𝑒−

𝑚𝑣2

2𝑇

• Thus 𝑤𝑝,𝑡𝑜𝑡 =
𝑛 𝜓𝑐𝑠 𝑉𝑡𝑜𝑡𝑅

𝑁𝑝𝑅0

[Heikkinen et al, JCP 173, 527–548 (2001)]

[Bierwage et al, CPC 183 (2012) 1107; CPC 275, 108305 (2022)] [Lu et al JCP2021, PPCF2023, same philosophy as Hatzky2019]



• For simulations starting from local Maxwellian EP distribution, a relaxation in density profile 

occurs in few transit periods (𝒕/𝑻𝑨 ~𝟏). Density gradient & growth underestimated by ~𝟒𝟎%

• Using constants of motion, markers are loaded to represent the stationary EP distribution

Marker loading using local Maxwellian versus constants of 
motion
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• Red dashed line: target density gradient profile

• Left: load markers with 𝑓𝑙𝑜𝑐 = 𝑛 𝑟 exp −
𝑚𝐸

𝑇

• Right: load markers with 𝑓𝐶𝑂𝑀 = 𝑛(𝑟cs)exp{−
𝑚𝐸

𝑇
}

𝑟𝑐𝑠
2 =

𝜓cs−𝜓axis

𝜓edge−𝜓axis
; 

𝜓𝑐𝑠 = 𝜓 +
𝑚𝐹

𝑞𝐵
𝑣∥ − 𝑠𝑖𝑔𝑛 𝑣∥ 2 𝐸 − 𝜇 𝐵0

𝑚𝐹

𝑞𝐵0
𝐻(𝐸 − 𝜇 𝐵0)

• 𝑛 𝑟 = 𝑛0𝑐3exp −
𝑐2

𝑐1
tanh

𝑟−𝑐0

𝑐2



• Distribution in constant of motion mitigates artificial density relaxation

• But 𝑛(𝑟cs) specifies the orbit density; 𝑛 𝑟 : particle density 

• Match between 𝒏(𝒓𝐜𝐬) and 𝒏(𝒓): mapping between the distribution in (shifted) orbit center 

and that in particle location

• EP relaxation is avoided; EP profile and growth rate matched to 𝛿𝑓 results

Full 𝒇 simulations matched to 𝜹𝒇 simulations
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[Z Lu, G Meng, R Hatzky, M Hoelzl, 

P Lauber, PPCF (2023)] 



• Unstructured meshes are generated for 

circular geometry

• TAE oscillation simulated using the 

modified ITPA-TAE parameters 

• 𝒏 = 𝟐, 𝜷 =
𝟏𝟎−𝟒

𝟗
,
𝒎e

𝒎p
=

𝟏

𝟐𝟎𝟎

• nominal: 𝐧 = 𝟔, 𝜷 = 𝟗 × 𝟏𝟎−𝟒,
𝒎e

𝒎p
=

𝟏

𝟏𝟖𝟑𝟔

• Magnetic axis is included

• Two species; pure 𝒑∥ form

• 18 radial grids, 8 grids/per toroidal wave 

length

• Ongoing: simulations with smaller electron 

skin depth (𝑑e), longer time scale, higher 

resolution.

TAE simulations (moderate 𝒅𝐞) in TRIMEG-C1
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Neoclassical physics

Full 𝒇 nonlinear collision operator

Field-aligned finite element method

Other ongoing studies
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The Lorentz collision model w/o 𝑬𝒓 solver 

is implemented in TRIMEG-C0: electron 

transport and bootstrap current (Lana 

Rekhviashvili; master thesis)

𝜹𝒇 scheme; Bootstrap current, electron 

particle/energy fluxes agree with theory 

(R/a=10)

High/low collisionality (upper/bottom): 

good agreement with local theory

Particle simulations is capable in larger 

parameter regimes (large orbit width, 

global effects etc) than local theory

A) Neoclassical physics in TRIMEG-C0
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[L. Rekhviashvili, master thesis; arXiv preprint arXiv:2303.00415]



Neoclassical physics with 𝑬𝒓 in TRIMEG-GKX
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Parallel line in TRIMEG-GKX: multi-species model, with Lorentz collision & 𝑬𝒓 solver

• Flat 𝑻 case (only 𝒏 variation)



Fully nonlinear collision operator (species 𝒂 scattered by 𝒃):

1

𝛤

𝜕𝑓𝑎

𝜕𝑡
= −

𝑚𝑎+𝑚𝑏

𝑚𝑏

𝜕

𝜕𝒗
⋅ 𝑓𝑎

𝜕

𝜕𝒗
ℎ(𝒗) +

1

2

𝜕

𝜕𝒗
⋅
𝜕

𝜕𝒗
⋅ 𝑓𝑎

𝜕

𝜕𝒗

𝜕

𝜕𝒗
𝑔(𝒗) (1)

Integral form: ℎ 𝒗 = ∫ 𝑑𝒗
𝑓𝑏 𝒗′

𝒗−𝒗′
, 𝑔 𝒗 = ∫ 𝑑𝒗𝑓𝑏 𝒗′ 𝒗 − 𝒗′ (2)

Elliptic equation: 
𝜕

𝜕𝒗
⋅
𝜕

𝜕𝒗
ℎ 𝒗 = −4𝜋𝑓(𝒗), 

𝜕

𝜕𝒗
⋅
𝜕

𝜕𝒗
𝑔 𝒗 = 2ℎ(𝒗) (3)

• Valid for arbitrary distribution function; no expansion near Maxwellian

• 0d2v/3v, Directly solving (2): 𝑁𝑝 × 𝑁𝑔, 𝑁𝑝: particle #, 𝑁𝑔: 𝒗 grid number

• Solving (3): field Degree of  Freedom is 𝑁𝑔; particle-to-field projection:𝑂(1)𝑁𝑝

• Upper limit of cost: 𝑁𝑝 × 𝑁𝑔 or 𝑂 ≪ 𝑁𝑔 𝑁𝑔 + 𝑂(1)𝑁𝑝

• Mixed direct-elliptic solver is developed, in test code

• Pros: lower consumption (than 2 body-collisions ~𝑵𝒑
𝟐); Cons: rigorous conservation is not obvious

• Possible improvement: control variate scheme [Sonnendrücker, et al. JCP 295, 402 (2015)]; or 

improvement in solving Langevin equation (w/ inputs from C. Slaby, R. Kleiber)

B) Full 𝒇 nonlinear collision operator: aims for reducing cost 
from  𝑵𝒑

𝟐 to 𝜶𝑵𝒑 in 0d2v/3v, large marker # limit
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w/ input from A. Chankin, A. 

Bergmann, G. Meng et. al.

Red dots: theory; 

lines: simulation



Maxwellian distribution as a steady state

• Deviation from Maxwellian appears if

time step size is large

Time evolution of a bump-on-tail

distribution

• Relaxation from bump-on-tail to

Maxwellian is simulated

• Conservation improves as time step

size decreases

2d2v model ongoing (full 𝒇 neoclassical 

physics) 

Key issue: how to get better/rigorous 

conservation?

Numerical/physics tests of nonlinear collision operators
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• All grids are aligned without shift

• Basis functions are defined on piecewise field-aligned coordinate

• The grid number in the parallel direction can be reduced greatly

• Convergence relies on marker #, grid # in 3 directions, order of finite 

element basis functions

• Linear/cubic finite element implemented (3d Vlasov-Poisson problem, 𝜹𝒇

scheme); goal: 𝑛𝜙 = 16 or 32; 𝑛𝜃 = 512; 𝑛𝑟 = 64 for 𝒏 ∈ 𝟎, 𝟏, … , 𝟏𝟐𝟖]

C) Field-aligned finite element: for multi-(high) 𝑛 NL simulations
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Grid # 𝑛𝜙 = 2 Grid # 𝑛𝜙 = 8



• The Clebsch coordinate is calculated numerically 𝜼 = 𝜼(𝒓, 𝜽, 𝝓), 

𝒓 = (𝝍 − 𝝍𝒂𝒙𝒊𝒔)/(𝝍𝒆𝒅𝒈𝒆 − 𝝍𝒂𝒙𝒊𝒔)

• Equations are represented in the Clebsch coordinates (𝒓, 𝜼, 𝝓)

• Partition of unit is satisfied (issue raised by Eric)

• Strong deformation of poloidal grids avoided; periodicity along 𝜽

and 𝝓 are satisfied (issue raised by Laurent, Matthias et al)

Construction in tokamak geometry
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• Grid deformation for 

large/small toroidal grids #

𝜼(𝒓, 𝜽, 𝝓)



Summary

• EP driven TAE simulated for small electron skin depth limit (𝒅𝒆~𝟏𝟎
−𝟑) with MV/PB scheme

• The mixed full 𝒇-𝜹𝒇 scheme has been implemented for EP driven TAEs

• The EP simulations using constant of motion is especially useful in full 𝒇 schemes

• ITG/TEM with kinetic electrons/EM effects are simulated in TRIMEG-C1

Outlook

• Aiming for physics studies with X point, EM and kinetic electrons

• Field aligned coordinate in parallel direction, unstructured mesh in (𝑹, 𝒁): merit more effort

• Application to EP/AE studies in AUG experiments merits more effort

• Implementation of the EM GK model in JOREK can lead to a powerful tool

• Full 𝒇 collision might reveal interesting physics (NC-instability synergy, edge coupling etc.)

Conclusions and outlook
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TRIMEG-C1

Backup slides

F U L L F,  𝛿𝑓 E M  G K  E PM A X - P L A N C K - IN S TITU T F Ü R  P L A S M A PH YS IK  |  Z . L U   |  2 1 S T N O V  2 0 2 2 2 8



Implicit full-𝑓 scheme using 𝒗∥ form

• Particle enslavement makes it possible 

• Degree of freedom reduced to field grid size

• Moment enslavement is proposed by us

• Starting from particle enslavement

• Achieved: good convergence of the implicit 

particle-field system

• TAE w/o and with EPs are simulated; good 

agreement with LIGKA for the ITPA-TAE 

case

Z H IX IN  L U ,  TR IM E G 2 9

[Z.X. Lu, G. Meng, M. Hoelzl, Ph. Lauber, Journal Comput. Phys. 

440 (2021) 110384]

[G. Chen & Chacon 230(18), 2011 J. Comp. Phys.]

https://www.sciencedirect.com/science/article/pii/S0021999121002795?via%3Dihub


Good convergence achieved in particle-field implicit solver

In order to get good convergence of the implicit field-particle solver, the relative correction in 

𝛿𝜙 and 𝛿𝐴∥ in every iteration are analyzed

• In Step 4:  set field for the next iteration, {𝛿𝜙𝑠𝑡𝑎𝑟𝑡, 𝛿𝐴∥
𝑠𝑡𝑎𝑟𝑡 }𝑖+2 = {𝛿𝜙𝑒𝑛𝑑, 𝛿𝐴∥

𝑒𝑛𝑑 }𝑖+1 + {Δ𝛿𝜙, 

Δ𝛿𝐴∥}; where {Δ𝛿𝜙, Δ𝛿𝐴∥} is solved from additional equations (moment enslavement)

4 / 1 7 / 2 0 2 3G K - C 1 3 0

[Z.X. Lu, G. Meng, M. Hoelzl, Ph. Lauber, 

Journal Comput. Phys. 440 (2021) 110384]

• Good convergence 

achieved (left: XGC; 

right: Lu2021)

Courtesy of Sturdenvant

https://www.sciencedirect.com/science/article/pii/S0021999121002795?via%3Dihub


Using mixed variables, GC equations of motion are as follows 

•
𝑑𝑹0

𝑑𝑡
, 
𝑑𝑢∥,0

𝑑𝑡
: velocity, acceleration in magnetic equilibrium

•
𝑑𝛿𝑹

𝑑𝑡
, 
𝑑𝛿𝑢∥

𝑑𝑡
: velocity, acceleration due to perturbed field

Guiding center’s equations of motion
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Ohm’s law: 𝜕𝑡𝛿𝐴∥
s + 𝜕∥𝛿𝜙 = 0



Using mixed variables, denoting the physics (symplectic) current as 𝜹𝒋∥,𝒗

𝛁⊥
𝟐𝛿𝐴∥,0

h = −𝛻⊥
2𝛿𝐴∥

s − 𝜇0𝛿𝑗∥,𝑣

Ignore finite Larmor radius (as an example)

In 𝜹𝒇 scheme, 𝛿𝑗∥,𝑣 = ∫ 𝑑𝒗𝑣∥𝛿𝑓𝑣 𝑣∥ ≈ ∫ 𝑑𝒗 𝑢∥ −
𝑞𝑠

𝑚𝑠
𝛿𝐴∥

h 𝛿𝑓𝑢 𝑢∥ +
𝑞𝑠

𝑚𝑠
𝛿𝐴∥

h 𝜕𝑓0

𝜕𝑣∥

≈ ∫ 𝑑𝒗𝑢∥ 𝛿𝑓𝑢 𝑢∥ + 𝑢∥
𝑞𝑠
𝑚𝑠

𝛿𝐴∥
h 𝜕𝑓0
𝜕𝑣∥

= ∫ 𝑑𝒗𝑢∥𝛿𝑓𝑢 𝑢∥ − ∫ 𝑑𝒗
2𝑢∥𝑣∥

𝑣𝑡ℎ
2

𝑞𝑠
𝑚𝑠

𝛿𝐴∥
h 𝜕𝑓0
𝜕𝑣∥

In full 𝒇 scheme, 𝛿𝑗∥,𝑣 = ∫ 𝑑𝒗𝑣∥𝛿𝑓𝑣 𝑣∥ = ∫ 𝑑𝒗 𝑢∥ −
𝑞𝑠

𝑚𝑠
𝛿𝐴∥

h 𝑓𝑢

= ∫ 𝑑𝒗𝑢∥𝑓𝑢 − ∫ 𝑑𝒗
𝑞𝑠
𝑚𝑠

𝛿𝐴∥
h𝑓𝑢

where𝑓𝑢 = 𝑓𝑢(𝑢∥ −
𝑞𝑠

𝑚𝑠
𝛿𝐴∥

h); with Fourier filter, denoted as 𝜹𝑗∥,𝑣

Some details of derivations of the symplectic current
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𝑢∥ = 𝑣∥ +
𝑞𝑠
𝑚𝑠

𝛿𝐴∥
h

Consistent with Hatzky19



Good convergence of the iterative Ampere solver is 

observed

• 𝛁⊥
𝟐 − σ𝑠

1

𝑑𝑠
2 𝛿𝐴∥,𝑝

h = −σ𝑠
1

𝑑𝑒
2 𝛿𝐴∥,𝒑−𝟏

𝐡 + σ𝑠
1

𝑑𝑒
2 𝛿𝐴∥,𝑝−1

ℎ , 

𝒑 = 𝟏, 𝟐, 𝟑 …

• 𝛿𝐴∥,𝑝−1
ℎ is calculated by the field-to-marker 

interpolation first, and then, the marker-to-field 

projection.

Convergence of the iterative Ampere solver
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Good convergence observed as marker number > 𝟏𝟎𝟔 and 
𝚫𝐭

𝐓𝐀
≤ 𝟎. 𝟎𝟓

40 steps /wave period already shows good accuracy

Convergence w.r.t. time step size and marker number
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Results: TRIMEG-C1 (unstructured mesh; realistic geometry)

ongoing
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C1 finite element: accuracy much better than C0

C1 Finite Element Method in triangular mesh shows 

good accuracy in field solver 

• C1 Error ~1/𝑁𝑟
5 VS C0: 1/𝑁𝑟

2

• 18 basis functions in each triangle

• 𝛻2𝑠𝑜𝑙 = 𝑟ℎ𝑠, solved in a rectangle

M A X - P L A N C K - IN S TITU T F Ü R  P L A S M A PH YS IK  |  Z H IX IN  L U |  A P R IL  2 0 2 3 3 6

C0

C1



RZ plane: C1; 18 basis functions in each triangle

Quintic polynomials (𝑵𝒌 𝝃, 𝜼 = 𝑪𝝃𝒑𝜼𝒒, 𝒑 + 𝒒 ≤ 𝟓); C1 continuity across edges

6 degree of freedom per each node (𝒇, 𝝏𝒇/𝝏𝑹, 𝝏𝒇/𝝏𝒁, 𝝏𝟐𝒇/𝝏𝑹𝟐, 𝝏𝟐𝒇/𝝏𝑹𝝏𝒁 ,𝝏𝟐𝒇/𝝏𝒁𝟐 )

[Jardin, J. Comput. Phys. 200 (2004) 133]



• Cyclone case is adopted for test

• 𝑛 = 10 , marker #: 16e6; 𝑁𝑟 , 𝑁𝜙 =

32,8 ; 𝑁𝜃~2𝜋𝑁𝑟𝑟/𝑎

• 𝑑e increased to save computing time

• 2D mode structure of ITG/CTEM:

opposite tilting angles

• Studies of flow and current 

generation due to turbulence 

merits more efforts in future; e.g., 

comparison with GEM results 

ITG/TEM simulations with kinetic electrons and EM effects
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[X Chen, Z Lu*, H Cai* et al, PPCF 64, 115008 (2022);

X Chen, Z Lu*, H Cai*, et al, POP 28, 112303 (2021)]



(Gyro)kinetic simulations in the MHD limit reveals important physics phenomena

• Kinetic effects (finite Larmor radius/orbit width) on peeling-ballooning mode

• Energetic particle/kinetic particle effects on tearing mode, kink mode

Various numerical/physical schemes for electromagnetic gyrokinetic particle simulations

• Early treatment: fluid-like electrons (Lin01), iterative Ampere solver [Y. Chen03]

• The “cancellation” problem in the particle simulations (𝑝∥ or Halmitonian form) can be 

mitigated/eliminated by the mixed variable-pullback scheme [Hatzky19,Mishchenko14,Kleiber16]

• The implicit 𝑣∥ or Sympletic form also shows its capability in EM gyrokinetic particle simulations 

[Sturdenvant21(XGC):𝛿𝑓, Lu21:full 𝑓]

Challenge: Full 𝒇 electromagnetic particle simulations in the small electron skin depth limit

• Different concerns in full 𝑓: Higher noise level, distribution in constant of motion

• The full 𝑓 mixed variable/pullback scheme has not been developed except few cases (Hager22XGC: 

electron skin depth 𝑑𝑒 = 𝑚𝑒/(𝜇0𝑒2𝑛0) is relatively large; work here: 𝑑𝑒~10
−3)

Background and motivation
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