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JET-ILW phenomenology

1. Tungsten divertor, Beryllium first wall

2. Need increased gas puffing to control Tungsten accumulation

3. Reduced Te,ped and global confinement

4. Need increased input power to sustain Te,ped

GENE simulations to understand the effect of gas puffing on ETG
turbulence
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Dataset

I JET-ILW dataset
varying PNBI for
three levels of gas
[C. F. Maggi et.
al. Nucl. Fusion
2015]

I Ip = 1.4MA,
BT = 1.7T,
δ ≈ 0.25
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Density and Temperature profiles
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b)

Normalised Toroidal Flux torr

I Pre-ELM (80%− 99%) profiles
I HG has flatter density profiles → larger ηe = ne∇Te

Te∇ne
=

ωTe
ωne

I HG has higher ne,sep - correlated with npos
e − T pos

e > 0 [L.
Frassinetti et. al. Nucl. Fusion 2019]

I This talk will focus only on the two HP pulses
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High power ETG heat flux variation in the pedestal
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I Pedestal ETG heat flux scaling for
these pulses characterised in B.
Chapman-Oplopoiou et al 2022
Nucl. Fusion 62 086028

I Using local GENE at a steep
gradient flux-surface, varied ηe via
ωne = a/Lne and ωTe = a/LTe

I Normalise heat fluxes to
QMGBe = ne Te vTe ρ

2
e/L2

Te
(using

ρ∗e = ρe/LTe )

I Good agreement with [W.
Guttenfelder et. al. Nucl. Fusion
2021] (green, extrapolated)

I HPHG and HPLG pulses display
“similar” trends
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High power ETG heat flux variation in the pedestal

“Gas puffing flattens the density profile

→ reduces ωne = a/Lne →
increases ηe = Lne/LTe → more (slab-)ETG turbulence → higher
power needed to sustain temperature pedestal”
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BUT:

1. HPHG pulse has stiffer
transport

2. HPHG has slightly
different ηe dependencies

Is the turbulence of a
different nature?
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Linear eigenfunctions
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I Modes with larger kz become more
important as ωTe is increased [M. J.
Pueschel et. al. Plasma Phys. Control.
Fusion 2019]

I Use POD analysis to extract the most
prominent structures in a nonlinear system
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POD analysis
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I POD decomposition for
nominal HPHG simulation
at kyρs = 30.0

I POD #1 carries a plurality
of the heat flux, but only
∼ 12% of the total at this
kyρs

I For each POD mode we
can calculate 〈kz〉

See [J. Walker et. al. in preparation] for a detailed discussion
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HPHG POD analysis

Construct 〈kz〉 spectra:

I For every POD mode, calculate 〈kz 〉 and Qe

I Define several 〈kz 〉 bins and plot Qe vs 〈kz 〉
I Sum over kyρs ≤ 200 then normalise to total Qe
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I No significant change in the spectrum as
ηe is increased via decreases in ωne

I Spectral pile-up at largest 〈kz 〉 as ωTe is
increased above the nominal, evidence of
critical balance [M. Barnes et. al. PRL
2011]
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HPLG POD analysis
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I As ωne is decreased, 〈kz〉 spectrum broadens and low 〈kz〉
peak appears

I Spectra not the same for the same ηe

I Total Qe remains approximately the same
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HPHG vs HPLG POD analysis
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I HPLG peaks at higher ky and 〈kz〉 → turbulence more
slab-like

I Hypothesis: HPHG is a mixture of slab and toroidal ETG
turbulence (at this flux-surface)
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Outline

1. Problem description / Previous work

2. POD analysis of the turbulence simulations

3. The role of magnetic drifts

4. Summary
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HPLG - the role of magnetic drifts
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I Repeat some HPLG scan-points without the magnetic drift
terms in the GK equation

I Negligible change in the heat fluxes

I Low 〈kz〉 POD structures are absent for nominal
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HPHG - the role of magnetic drifts
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I Without drifts, Qe trend is the same regardless of how ηe is varied, and
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I HPHG heat flux reduces significantly when drifts removed

→ Toroidal AND
slab resonance important

I Note: This is not the low ky Toroidal ETG turbulence discussed in J.F. Parisi et
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HPHG POD structures revisited

I At kyρs = 30.0,
removing the
magnetic drifts kills
the first three POD
modes which have
low 〈kz〉

I Full-drift and
No-drift POD
spectra in close
correspondence
when the first three
POD modes are
removed from the
former (at
kyρs = 30.0)
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HPHG POD structures kyρs = 30.0 - Full-drift
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I 1st POD structure looks ballooning - expected for Toroidal
mode

I 2nd and 3rd POD structures (not shown) look similar

I 4th POD structure looks more slab like
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I The 1st No-drift (slab) POD structure looks similar to 4th
Full-drift POD structure

I The other No-drift POD structures also look slab like
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Summary

I HPHG and HPLG simulations exhibit different Qe trends with ηe

I Qe/QGBe (using LTe ) follows similar trends with ηe for both
pulses and scan types in agreement with [W. Guttenfelder et. al.
Nucl. Fusion 2021]

I Multiple ETG eigenmodes with varying kz are present linearly,
and similar structures are found in nonlinear simulations

I Many POD modes contribute to total Qe

I Nominal HPLG is “pure slab”, whereas HPHG is a mixture of
slab and toroidal turbulence
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Revised understanding

OLD

“Gas puffing flattens the density profile → reduces ωne = a/Lne →
increases ηe = Lne/LTe → more (slab-)ETG turbulence → higher
power needed to sustain temperature pedestal”

NEW

“Gas puffing flattens the density profile → reduces ωne = a/Lne

→ Addition of toroidal ETG turbulence in the steep gradi-
ent region→ higher power needed to sustain temperature pedestal”

At least for these pulses at these flux-surfaces...
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Important plasma profiles
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Simulation details

I Kinetic ions and electrons, impurities included via Zeff in collision operator

I Realistic geometry taken from EFIT and improved using HELENA

I Equilibrium flow shear estimated using neoclassical formula

I ky,minρs = 2.5, ky,maxρs = 317.5

I kx,minρs ≈ 1.29, 70 . kx,maxρs . 82

I Adaptive hyper-diffusion - GyroLES

I nz = 240, nv‖ = 36, nµ = 8
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HPHG POD analysis resolution testing
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Spectral pile-up for nz = 240 doesn’t change our conclusions
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High power Fluxspectra

HPLG - ηe0 ≈ 2.7
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I ky,minρs = 2.5, ky,maxρs = 317.5, kx,minρs ≈ 1.3, ky,maxρs ≈ 83, GyroLES

I HPLG is well resolved, hardly any under-resolved modes at low kyρs and
evidence of scale-separation

I HPHG shows some under-resolved modes at low kyρs - primary ETG peak still
prominent and well resolved

I NB - γE is small, and the time windows are different in all cases (see work of
J.F. Parisi for a discussion of the importance of the simulation duration)
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The effect of flow shear - HPLG - ωTe = 1.2ωTe 0 - Qe (z)0.90 0.95 1.00
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I γExB ≈ 0.67 at the nominal flux surface ρt = 0.973 (dashed-red)

I Close to unphysical “well” in γExB (a consequence of the neoclassical Er

calculation) → actual γExB could be much larger

I Quadruple γExB and compare Q (z) over same time window

I Primary ETG - peak at z ≈ 0 unchanged

I Peaks at z ≈ ±π/2 decrease with γExB (negligible change in total Qe )

I Decrease in Qe at z ≈ ±π/2 corresponds to a decrease in Qe at low kyρs
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The effect of flow shear - HPLG - ωTe = 1.2ωTe 0 - Qe (z)
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I Peaks at z ≈ ±π/2 are correlated with a gradual run-away in
Qi , commensurate with an up-tick in Qe , which is remedied
with increased γExB

I Note - Qz averaged over only a small time-window
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The effect of flow shear - HPHG - ωTe = 1.2ωTe 0 - Qe (z)0.90 0.95 1.00
Normalised Toroidal Flux torr
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I γExB ≈ 0.66 at the nominal flux surface ρt = 0.964 (solid-red)

I Quadruple γExB and compare Q (z) over same time window - γExB unphysically
large in this case (but feasible for other pulses)

I All three peaks decrease with γExB

I ∼ 22% decrease in Qe
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HPLG - ωTe
= 1.2ωTe0 - ωTe

= ωTi
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I Increase ωTi
along with ωTe

(previously held ωTi
constant)

I No appreciable change with
increasing ωTi

→ holding ωTi

doesn’t affect the ETG results
shown here

I Note: the simulations are not
self-consistent
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A note on the experiment

I LG (on HT) and HG (on CT) have approximately the same ne,ped

I This is due to CT having more efficient pumping, hence, a lower
edge particle source term

I fELM also increases with gas, which may increase ELM particle
losses

I Comparing LG and HG can be thought of as a gas scan at
approximately constant ne,ped - considering how shape of the
profiles effects transport

I MG (on CT) has lower ne,ped than HG, can be thought of as a
“pure” gas scan with both profile shape and differing ne,ped effects
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Peeling-ballooning stability diagrams
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I Axes are normalised! PB
boundary isn’t actually
moving much

I HPLG to the right of the PB
boundary

I HPHG to the left of the PB
boundary



TSVV1 Progress Workshop June 2023 — benjamin.chapman@ukaea.uk 11/16

Calculation of γE

γE =
ρt

q

d

dρt
Ω (1)

Ω =
Er

BθR
∝ 1

ni

dPi

dψ
− k‖

dTi

dψ
(2)

V‖ = 0 (3)
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ν∗e profiles

0.90 0.92 0.94 0.96 0.98
torr

0

2

4

6

8

* e

Low power - Low gas
High power - Low gas
Low power - High gas
High power - High gas



TSVV1 Progress Workshop June 2023 — benjamin.chapman@ukaea.uk 13/16

Experimental quantities LPLG - #84793
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Experimental quantities HPLG - #84794
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Experimental quantities LPHG - #87346
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Experimental quantities HPHG - #87342
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