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Pedestal height prediction essential for optimization 
of future Tokamak 
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Classical model EPED model 

Peeling-ballooning
modes (PB)

kinetic ballooning 
modes (KBM)

increase 
of the 

pedestal pressure

[P.B. SNYDER, 2012 ] 

Reference scenario for ITER

High confinement  (H-mode)

Formation of a pedestal

What determines the pedestal height and width?



Turbulent transport
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Heat fluxes:
𝓠 = 𝓠𝐄×𝐁 + 𝓠𝐞𝐦

Total heat flux
𝐸 × 𝐵 component

of the heat flux
Magnetic flutter component

of the heat flux
 𝐸 × 𝐵 advection: 

 Stochasticity of magnetic field lines: 

Produces particle and ion/electron heat fluxes 

Produces electron heat flux



Understanding of the electron heat transport
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 Stochasticity of the magnetic field lines occurs when magnetic islands overlap

 Microtearing modes unstable in fusion devices

ሚ𝐴∥ 𝑟, 𝜃, 𝜑, 𝑡 = 

𝑚,𝑛,𝜔

ሚ𝐴∥,𝑚,𝑛,𝜔 𝑟 exp{𝑖(𝑚𝜃 + 𝑛𝜑 − 𝜔t )}

 Random walk argument predicts a diffusion coefficient

DM∼ ෨𝑏𝑟
2𝐿∥𝑐|𝑣∥|

 Low level of magnetic fluctuation produces a significant
electron heat transport

e− (1keV) ෨𝑏𝑟∼ 10−4 DM ∼ 1m2/s

[Rechester, Phys. Rev. 1981]

[J. Sarff, 2009]

JET H-mode Pedestal
[D.R. Hatch et al., Physics of Plasmas 29, 062501 (2022)]
[D.R. Hatch, et al., Nucl. Fusion, 56: 104003, 2016]

ASDEX-Upgrade
[H. Doerk, et al. Phys. Plasmas, 19: 055907, 2012]
[D. Told, et al., Phys. Plasmas, 15: 102306, 2008]

DIII-D
[M. T. Curie, et al. 2022]
[X.Jian et al, Physics of Plasmas 28, 042501 (2021)]

Spherical Tokamak
[D.J Applegate, et al., Phys. Control. Fusion, 49: 1113, 2007]
[K. Wong, et al., Phys. Rev. Lett, 99: 135003, 2007]
[W. Guttenfelder , et al., Phys. Plasmas, 19: 022506, 2012]
[D. Dickinson, et al., Phys. Rev. Let., 108: 135002, 2012]

RFP 
[I. Predebon, et al., Phys. Plasmas, 20: 040701, 2013]
[D. Carmody, et al., Phys. of Plasmas, 20:052110, 2013] [Hatch NF 2016]



Classical picture of MT
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Name: Microtearing modes (MT)
Characteristics: 
- Electromagnetic instability
- Destabilized by 𝛻𝑇𝑒/𝑇𝑒
- Localized mode
- Tearing parity

Particularity: break-up and
reconnection of magnetic field
lines

Large electron heat flux            Limiting pedestal height and width
Better understanding of MT          better control of the pedestal

Outer solution:

𝛻⊥
2𝐴∥,𝑜𝑢𝑡 = 0

𝐴∥,𝑜𝑢𝑡= 𝐴∥(0)𝑒
−𝑘𝜃𝑥

Ampère’s law:   𝜵⊥
𝟐𝑨∥ = −𝝁𝟎𝒋∥
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Theory and Modelling of MT
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 Solving of the Poisson and Ampère equation’s using the variational form:

ℒ = −
1

μ0
∫ d3 x 𝛻⊥ ෩A∥

2
+ ∫ ሚJ∥෩A∥

∗ − ρ෩ϕ∗ d3x

[M. Hamed et al.,2018]

μ0 ǁ𝑗∥ = −𝛻⊥
2 ሚ𝐴∥

ǁj∥ = −e∫ v∥ሚf d
3v

𝜕𝑡f + v. 𝛻f +
𝑒𝐸∥
𝑚

𝜕𝑓

𝜕𝑣∥
= 𝑪(𝒇)

v = v∥ b + v𝜒 + 𝐯𝐝
𝐸∥ = −

𝜕𝐴∥
𝜕𝑡

− 𝛁∥𝝓

Fokker-Planck  equation:

0 =
𝜕ℒ

𝜕 ሚ𝐴∥
∗

𝜕ℒ

𝜕 ෨𝜙∗
= 0

Poisson

Magnetic drift 

𝜌 = 0

𝜌 = −e∫ ሚf d3v

Ampère

Collisional
operator



The functional becomes …
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ℒ = −
1

𝜇0
∫ 𝑑3 𝑥 𝛻⊥ ሚ𝐴∥

2
+න𝑑3𝑥

𝑁𝑒𝑞𝑚𝑖

𝐵0
2

𝜔 − 𝜔𝑖
∗

𝜔
𝛻⊥ 𝜙

2

+

𝑠𝑝

න𝑑3𝑥
𝑁𝑒𝑞𝑚𝑖

𝐵0
2

𝜔∗ 𝜔𝑑

𝜔2
𝒥 ෨𝜙

2
+

1

𝜇0
2𝑑𝑒

න

−∞

+∞
𝑑3𝑥

𝑑
𝜎 𝑥 ቚ𝐴∥ − ቤ

𝑘∥
𝜔
𝜙

2

Magnetic energy

Polarization term

Interchange drive
Resonant response 
of ions and electrons

 The extremalization of the functional in the physical space provides a set of two equations

𝛻⊥
2 ሚ𝐴∥ + 𝜎𝛽∗ ሚ𝐴∥ −

𝜌

𝛺
෨𝜙 = 0

𝛻⊥
2 ෨𝜙 + 𝜇𝑒 𝛺 𝜎

𝜌

𝛺
ሚ𝐴∥ −

𝜌

𝛺
෨𝜙 + 𝐶𝑖𝑛𝑡 ෨𝜙 = 0

β∗ =
βe

|kθ ρe|

R

LT

q

ොs
𝜇𝑒 Ω = 𝛽∗

1

1 +
1
Ω

1
𝜂𝑒

+ 1



The eigenvalue code: « Solve_AP »
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𝛻⊥
2 ሚ𝐴∥ + 𝜎𝛽∗ ሚ𝐴∥ −

𝜌

𝛺
෨𝜙 = 0

𝛻⊥
2 ෨𝜙 + 𝜇𝑒 𝛺 𝜎

𝜌

𝛺
ሚ𝐴∥ −

𝜌

𝛺
෨𝜙 + 𝐶𝑖𝑛𝑡 ෨𝜙 = 0

𝜓𝑖𝑥+1 − 2𝜓𝑖𝑥 + 𝜓𝑖𝑥−1

𝑑𝑥2
− 2𝑘𝜃

2 + 𝜎 Ω𝑖𝑥 𝛽∗ 𝜓𝑖𝑥 𝜓𝑖𝑥 −
𝜌𝑖𝑥
Ω𝑖𝑥

𝜙𝑖𝑥 = 0

𝜙𝑖𝑥+1 − 2𝜙𝑖𝑥 + 𝜙𝑖𝑥−1

𝑑𝑥2
− 2𝑘𝜃

2 + 𝜎 Ω𝑖𝑥 𝜇𝑒 Ω𝑖𝑥

𝜌𝑖𝑥
Ω𝑖𝑥

𝜓𝑖𝑥 −
𝜌𝑖𝑥
Ωix

𝜙𝑖𝑥 + 𝐶𝑖𝑛𝑡 𝜙𝑖𝑥 = 0

 Discretization

 Boundary conditions for MTs:

 Resolution of the Kinetic Reduced MHD equations

fixed parity of ሚ𝐴∥: even and 𝜙: odd



Solving the Kinetic Reduced MHD model
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 Problem transformed into a matrix problem by discretizing

• Finite differences

M(Ω).X=0               X=( 𝜓,φ)

• Solution refined via Newton 
Method

• Calculations of the 
eigenvalues, mode frequency
and growth rate: solutions of 
the Ampère/Poisson 
equations



Linear stability of the JET pedestal
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 Local linear simulations of the JET pedestal:
 Objective: determine the dominant instabilities
in the JET H-mode pedestal at 3 different
radial positions

 Local gyrokinetic simulations for JET #82585 

 Evaluation of the electron heat transport



Microtearing unstable at low 𝒌𝒚𝝆𝒔
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JET shot #82585

ESDW
MT
KBM

X

+



Effect of trapped particles
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𝜌𝑡𝑜𝑟 = 0,98



Effect of beta
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𝜌𝑡𝑜𝑟 = 0,98𝜌𝑡𝑜𝑟 = 0,93 𝜌𝑡𝑜𝑟 = 0,97



Effect of beta
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𝜌𝑡𝑜𝑟 = 0,97

MT

KBM

KBM

MT



Effect of physical parameters
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𝜌𝑡𝑜𝑟 = 0,98𝜌𝑡𝑜𝑟 = 0,93 𝜌𝑡𝑜𝑟 = 0,97



Comparison SAP vs GENE
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Assumptions 
• Effective magnetic drift
• 𝜓-constant approximation
• No Trapped particle
• Pitch-angle scattering

collision operator
• No trapped particles



Towards a reduced transport model
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 Evaluation of the transport due to a magnetic turbulence

Magnetic perturbation:

modification of magnetic
field line direction

Principal effect of 
magnetic perturbation

ሚ𝐴∥ 𝑟, 𝜃, 𝜑, 𝑡 = 

𝑚,𝑛,𝜔

ሚ𝐴∥,𝑚,𝑛,𝜔 𝑟 exp{𝑖(𝑚𝜃 + 𝑛𝜑 − 𝜔t )}

 Relationship between quasilinear fluxes with the field functional

Γ𝑁 = 𝐯. 𝛻𝑟𝑓

Γ𝑇 = 𝐯. 𝛻𝑟𝑓
1

2
𝑚𝑣2 −

3

2
𝑇𝑒𝑞 𝑓

• The particle and heat fluxes across a
magnetic surface due to 
electromagnetic fluctuations

ℒ𝑟𝑒𝑠,𝑛𝜔
′ = ℒ𝑟𝑒𝑠,𝑛𝜔

𝑚𝑣2

2
−
3

2
𝑇𝑒𝑞



Magnetic flutter components of the heat fluxes
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 Electron heat diffusivity increases with the electron
temperature gradient

 Comparison of the field line diffusivity coefficient with the electron heat diffusivity with / without 𝝓

 Field line diffusivity coefficient: 

 MT turbulence produces a turbulent electron heat flux

The magnetic fluctuation level is taken from nonlinear simulations

 Electron heat diffusivity calculated by  the code is well described 
by the field line diffusivity coefficient 

• The electron heat flux increases when the electric potential 
is switched off

• Unexpected result



Saturated heat fluxes 
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Conclusion
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 In order to evaluate the role played by MTs:

 Gyrokinetic simulations have been performed to better understand the role played by physical parameters
 Improvement of the analytical calculation by progressively including missing physical mechanisms
 Develepment of an eigenvalue code « Solve_AP»  - comparison SAP vs. GENE

 Nonlinear simulations to evaluate the electron heat transport due to MT
 Reduced model: Link between heat flux and the functional
 Current inside the resonant surface drives the instability and generates magnetic islands
 Analysis of JET pedestal plasmas (82585 )

MT dominant in the pedestal - Several instabilities co-exist with comparable growth rate

Development of a quasi-linear transport model for MT turbulence



Solving of Kinetic Reduced MHD model
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Without 𝝓 and without 𝝎𝒅

Without 𝝓 and with 𝝎𝒅

1

𝜷∗
= −i8

π

3
න
0

+∞

v Τ9 2 e−v
2
dv

𝛀 −
1
𝛈𝐞

+
3
2
− v2

v3 + i
ො𝛎𝒆𝒊
𝛀

ൗ1 2

1

𝜷∗
= −i8

π

3
න
0

+∞

v Τ9 2 e−v
2
dv

𝛀 −
1
𝛈𝐞

+
3
2
− v2

v3 + i
ො𝛎𝒆𝒊

𝛀 − 𝛀𝒅𝑣
2

ൗ1 2

[M. Hamed et al.,2019]



Analytical linear study of MT
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ω− 𝐤∥v∥ −𝛚𝐝 gnω =
Feq

Teq
ω−𝛚∗ 𝒥 ෨hnω + i𝓒(gnω)

Kinetic diamagnetic frequency

𝒞 ො𝑔𝑛𝜔 =
1

2
𝜈𝑒𝑖(𝑣)

𝜕

𝜕𝜉
(1 − 𝜉2)

𝜕 ො𝑔𝑛𝜔
𝜕𝜉

𝜔𝑑 =
𝑛𝑞0

𝑟0

𝑚𝑣∥
2+𝜇𝐵0

𝑒𝐵0𝑅0
(𝑐𝑜𝑠 𝜃 + 𝑠0 𝜃 − 𝜃𝑘 𝑠𝑖𝑛 𝜃)

𝑘∥ = −i
1

𝑞0𝑅0

𝜕

𝜕𝜃

 Electron-ion pitch angle scattering collision operator 

 Convenient to expand ො𝑔𝑛𝜔 over a basis of Legendre polynomials P𝑙 𝜉 :
ො𝑔𝑛𝜔 𝜂, 𝜉, 𝑣 = 

𝑙=0

+∞

ො𝑔𝑛𝜔 𝜂, 𝑣 𝑃𝑙 𝜉



Comparison Solve_AP vs. GENE
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 Evaluation of the role played by 𝝂𝒆𝒊

Assumptions 
• Effective magnetic drift
• 𝜓-constant approximation
• Pitch-angle scattering

collision operator
• No trapped particles


