Studies of Alfvénic modes in DTT positive and negative triangularity equilibria using HYMAGYC

<u>G. Vlad</u>, G. Fogaccia, V. Fusco

ENEA, Dipartimento FSN, C. R. Frascati, via E. Fermi 45, I-00044 Frascati (Roma), Italy

2023 TSVV 2 Annual Meeting July 17-18, 2023 PPB 019, Swiss Plasma Center Deliverable 2: Interpretive and predictive tools regarding NT stability in terms of MHD (e.g., β - and current limits, both global and in the pedestal) and extended MHD (e.g., exploring kinetic and plasma compressibility effects).

Milestone	Description	Participants	Target date
M2.2.1	Use HYMAGYC to investigate kinetic corrections to MHD	G. Fogaccia	12.2021
M2.2.2	Use HYMAGYC to investigate Alfvénic modes driven by energetic particles, with particular reference to DTT NT equilibria	G. Fogaccia	12.2023
M2.2.3	Use HYMAGYC to investigate the kinetic effects of energetic particles and core ions on the renormalized plasma inertia (compressibility) in scenarios of interest to plasmas close to ignition	G. Fogaccia	12.2025

Deliverable	Description	Participants	Target date
D2.2	Report on MHD stability properties of NT equilibria, including	A. Merle, G. Fogaccia	12.2023
	non-ideal effects in NT DTT equilibria and pedestal studies		

Deliverable 5: Predictive capability of the effect of shaping on fast ion confinement.

Deliverable	Description		Participants	Target date
D5.2	Report on fast particle confinement and fast particle driven instabilities in NT		M. Vallar, G. Fogaccia	12.2023
17-18 Jul	v 2023	G. Vlad et al., 2023 TSVV 2 Annual Meeting		2

The aim of our activity in 2023 is/will be to investigate the MHD stability, in particular the stability of Alfvénic modes driven by energetic particles, in DTT scenarios, with particular reference to the comparison between positive and negative triangularity equilibria.

Recently, a new DTT scenario has been developed, to allow an updated divertor configuration: this new, full power scenario, labelled v15, is a Single Null (SN), Positive Triangularity (PT) one with a cross section shifted upward by approx. 12-14 cm w.r.t. the previous scenarios, and results in an equilibrium with the magnetic axis above the equatorial plane. Among other consequences, this would result in Negative Neutral Beams which will not pass through the plasma center, and, thus, in Energetic Particle radial density profiles peaked off-axis.

Positive Triangularity v15

 $R_{axis} = 2.2580m$ $Z_{axis} = 0.1897m$ $q_0 = 0.6124$ $q_{edge} = 4.3235$

p₀=1.065MPa I_p= 5.446MA

Beta-axis = 7.115%

Negative Triangularity flipped (fixed p', I*)

 R_{axis} = 2.2931m Z_{axis} = 0.2010m q_0 = 0.6036 q_{edge} = 2.9984

p₀=1.093MPa I_p= 5.531MA

Beta-axis = 7.261%

Negative Triangularity flipped (fixed p', constant-q)

 R_{axis} = 2.2985m Z_{axis} = 0.2032m q0= 0.6116 q_{edge} = 4.4115

p₀=0.940MPa I_p= 4.217MA

Beta-axis = 6.427%

8

Alfvén continua using FALCON and HYMAGYC: PT

caso_DTT_3345_MHD_n1 HYMAGYC+FALCON: three intervals for Alfvénicity: 1-0.6667; 0.6667-0.3334; 0.3334-0.

Alfvén continua using FALCON and HYMAGYC: NT, fixed p', I*

caso_DTT_3345_MHD_n1_NT HYMAGYC+FALCON: three intervals for Alfvénicity: 1-0.6667; 0.6667-0.3334; 0.3334-0.

G. Vlad et al., 2023 TSVV 2 Annual Meeting

Alfvén continua using FALCON and HYMAGYC: NT. fixed p', constant-q

caso_DTT_3345_MHD_n1_NT_Istar_constant_q HYMAGYC+FALCON: three intervals for Alfvénicity: 1-0.6667; 0.6667-0.3334; 0.3334-0.

G. Vlad et al., 2023 TSVV 2 Annual Meeting

Internal kink, n=-1: PT

caso_DTT_3345_MHD_n1 HYMAGYC (only MHD):

Global Alfvénic modes, n=-2: PT

G. Vlad et al., 2023 TSVV 2 Annual Meeting

S

i-omega-MARS=1

Infernal mode n=-3: PT

caso_DTT_3345_MHD_n3 HYMAGYC (only MHD):

Global Alfvénic modes, n=-4: PT

caso_DTT_3345_MHD_n4 HYMAGYC (only MHD):

Infernal mode n=-5: PT

caso_DTT_3345_MHD_n5 HYMAGYC (only MHD):

Next add Energetic Particles from NNBI (to be done...) Experience in Energetic Particle density profile peaked off-axis (AUG, n=-1, TSVV#10):

New update on using HYMAGYC to explore kinetic effects on MHD modes (2022.10.04)

- Consider two cases: Γ=0 (open symbols in plots), Γ=5/3 (filled symbols in plots)
- Smoothly switching on the kinetic contribution of thermal ions:
 - varying thermal ion density (keeping the thermal ion temperature unchanged)
 - varying thermal ion temperature (keeping the thermal ion density unchanged, thermal ion resonances changes in this latter case...)

Summary plots