

Effects of negative triangularity plasma on boundary plasma physics

Kyungtak Lim and Paolo Ricci

École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Switzerland

TSVV2 Progress Workshop, July 17-18, 2023

GBS TSVV 2 milestones & deliverables ² EPFL

Within the TSVV 2, we aim to explore:

- **Effects of negative triangularity (NT) on boundary plasma turbulence**
- Connection with alternative divertor configurations (ADCs), i.e. double-null (DN)
- Other relevant theoretical works, such as density limit, LH transition scaling laws

Ongoing projects:

SWISS PLASMA CENTER

- Effect of triangularity in SOL region and λ_q scaling law in L-mode plasmas [**1]**
- Investigation of physical mechanism and scaling law for heat asymmetry in DN **[2]**
- NT in DN and its impact on power exhaust and edge plasma turbulence **[3]**
- Enhanced L-mode density limit in NT plasmas **[4]**

[1] K Lim *et al* 2023 Plasma Phys. Control. Fusion **65** 085006 **[2]** In preparation

- **[3]** Master project by Leonard from next week
- **[4]** Planned for the upcoming TCV campaign

■ Effect of triangularity in SOL region and λ_q scaling law in L-mode plasmas

- **EXED Investigation of physical mechanism and scaling law for heat asymmetry in DN**
- **NT in DN and its impact on power exhaust and edge plasma turbulence**
- **Enhanced L-mode density limit in NT plasmas**

Magnetic equilibria and geometrical operators ⁴ EPFL

- For nonlinear GBS simulations, NT(-0.3)/PT(+0.3) equilibria are analytically generated with constant elongation=1.3
- **Effects of plasma shaping are included in the geometrical** operators implemented in GBS

Enhanced NT confinement in linear & NL analysis ⁵ EPFL

(Left) the linear growth rate (Right) the poloidal wave number as a function of δ and κ

- Both linear and nonlinear GBS analyses have identified reduced turbulence levels and enhanced confinement in NT plasmas.
- The main reason for this is the reduction of interchange instabilities in NT
- plasmas, attributed to the curvature operator.

SWISS PLASMA CENTER

Enhanced NT confinement in linear & NL analysis ⁶ EPFL

With the same input parameters, the only difference is the magnetic equilibrium (Left) the energy confinement time (Right) the saturated pressure profile at the outer mid-plane

- Both linear and nonlinear GBS analyses have identified reduced turbulence levels and enhanced confinement in NT plasmas.
- The main reason for this is the reduction of interchange instabilities in NT

plasmas, attributed to the curvature operator.

■ SWISS PI ASMA **CENTER**

Derivation of the L_p scaling law EPFL

- Based on the idea that ballooning modes (BM) is stabilized in NT plasma, we derived an analytical scaling law for the pressure gradient length L_{p}
- **•** Main assumptions (i) BM is dominant in L-mode plasmas (ii) injected heating power is balanced heat flux leaving the separatrix

$$
L_p \simeq 1.95 C(\kappa, \delta, q)^{9/17} A^{1/17} q^{12/17} R_0^{7/17} P_{\text{SOL}}^{-4/17} n_e^{10/17}
$$

× $B_T^{-12/17} L_{\chi}^{12/17}$

with C is the curvature operator related to the growth rate of BM and Lchi is the poloidal length of the separatrix $L_x \simeq \pi a (0.45 + 0.55\kappa) + 1.33a\delta,$

Scaling law for λ **_q including triangularity** s **EPFL**

- The final scaling law captures the trend, reduced power decay length in NT
- The extrapolation to future machines shows almost a factor of 2 between PT/NT
- **•** This indicates the importance of triangularity for the reliable scaling law
- The values of λ q for **ITER PT H-mode (1mm) < ITER NT L-mode (2mm)**

- **E**ffect of triangularity in SOL region and λ _q scaling law in L-mode plasmas
- **EXTERF Investigation of physical mechanism and scaling law for heat asymmetry in DN**
- **NT in DN and its impact on power exhaust and edge plasma turbulence**
- **Enhanced L-mode density limit in NT plasmas**

Double-null (DN) : alternative solution to ITER single-null ¹⁰ EPFL

- DN of particular interest (1) four divertor legs to help handling heat load (2) two X-points for radiative losses.
- Heat asymmetry between different legs depends on magnetic configurations
- We believe that LFS turbulence leads to the upper-lower heat asymmetry

Scaling law for heat asymmetry in DN 11 **EPFL**

We propose the following scaling law for the heat asymmetry

$$
|q_{\parallel,\text{LO}} - q_{\parallel,\text{UO}}| = q_{\text{asym}} = q_{\psi} \bigg[\alpha_{\text{geo}} + (1 - \alpha_{\text{geo}}) \alpha_d \alpha_{\text{cst}} \bigg]
$$

with
$$
\alpha_{\text{geo}} = \frac{1}{L_p} \int_0^{\delta R_{\text{sep}}} \exp\left(-\frac{x}{2L_p}\right) dx = 1 - \exp\left(-\frac{\delta R_{\text{sep}}}{2L_p}\right)
$$

The main mechanisms:

SWISS PLASMA CENTER

- q_w = radial heat flux driven by turbulence
- α_d = vertical diamagnetic effects
- $\alpha_{\text{geo}}^{\text{v}}$ = geometrical effects

430 420 LSN $\delta R_{\rm sep}$ = $-20\rho_{\rm s0}$

The balance between $\bm{{\mathsf{q}}}_\psi$ vs $\bm{{\mathsf{\alpha}}}_\text{d}$ determines the upper-lower asymmetry

Comparison with nonlinear GBS simulations ¹² EPFL

- **A preliminary comparison with NL simulations shows some coherence between** analytical scaling and numerical result.
- What is the optimal DN configuration from a power handling perspective?
- Scaling laws will be used to predict the ideal dRsep values for SPARC, STEP, and DTT

- **E**ffect of triangularity SOL region and λ _q scaling law in L-mode plasmas
- **EXED Investigation of physical mechanism and scaling law for heat asymmetry in DN**
- **NT in DN and its impact on power exhaust and edge plasma turbulence**
- **Enhanced L-mode density limit in NT plasmas**

DN configuration + NT = even better option? ¹⁴ EPFL

- **•** The use of NT plasmas for reduced heat flux
- **•** The use of DN configuration for spreading heat flux

Next step will be the combination of DN and NT with a scan values of delta

- **This will be addressed by Master** student, Leonard Lebrun
- **•** Analytical scaling law for the L_p and the effects of NT on blob dynamics?
- Power handling?

K. Lim - TSVV1 Progress Workshops 2023

- **E**ffect of triangularity SOL region and λ _q scaling law in L-mode plasmas
- **EXED Investigation of physical mechanism and scaling law for heat asymmetry in DN**
- **NT in DN and its impact on power exhaust and edge plasma turbulence**
- **Enhanced L-mode density limit in NT plasmas**

Increased density limit in NT plasmas ¹⁶ EPFL

- **Exampler 1** First-principles density limit scaling law derived based on turbulence point of view
- Comparison with different tokamaks was successfully done
- **Missing effects of plasma shaping, radiation, shear flow, etc...**

B LaBombard et al 2005 Nucl. Fusion **45** 1658 M Giacomin *et al* 2022 Phys. Rev. Lett. **128**, 185003

Increased density limit in NT plasmas ¹⁷ EPFL

• Building upon the recent observation f_{GW} 2 in DIII-D and reduced turbulence in NT, one can imagine density limit also changes in a strongly shaped plasmas.

$$
n_{\rm lim} [10^{20} \rm m^{-3}] = \alpha \mathcal{C}(\kappa,\delta,q)^{-1/6} A^{1/6} a^{37/42} P_{\rm SOL}^{10/21} R_0^{-43/42} q^{-22/21} B_T^{2/3} L_\chi^{-2/3}
$$

Conclusions ¹⁸ EPFL

- Various topics are currently being addressed from the GBS simulations and theoretical works.
- NT plasmas seems playing an important role in the boundary region
- For the future works, we want to address
	- 1. Self-consistent detachment in NT plasmas using neutral injections
	- 2. Effects of baffled divertor in NT plasmas
	- 3. TCV size + DN + NT + neutrals + baffled divertor
	- 4. And a lot of interesting topics….

