

Mitigation of Alfvén Eigenmodes in Negative Triangularity plasmas at TCV

P. Oyola, M. García-Muñoz, M. Vallar, E. Viezzer, J. Rueda-Rueda, J. Domínguez-Palacios, J. Gonzalez-Martin, Y. Todo, S. Sharapov, A. Fasoli, B. Duval, A. Karpushov, S. Coda, O. Sauter and the TCV team.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

- Experimental observations of TAEs in NT
- MEGA: 3D nonlinear hybrid kinetic-MHD
- TAEs in NT and PT

Outline

- Wave-particle resonances in the FI phase-space
- Fast-ion losses induced by TAE in NT and PT

Outline

- Experimental observations of TAEs in NT
- MEGA: 3D nonlinear hybrid kinetic-MHD
- TAEs in NT and PT
- Wave-particle resonances in the FI phase-space
- Fast-ion losses induced by TAE in NT and PT

AEs in NT firstly observed in DIII-D

 Experiments in DIII-D⁴ to obtain AEs, shows TAEs excited in NT and PT.

⁴ M. A. Van Zeeland *et al.*, NF **59** 086028 (2019)

Gyrofluid simulations indicate negligible impact on AE activity

 Experiments in DIII-D⁴ to obtain AEs, shows TAEs excited in NT and PT.

- Numerical studies⁵ with FAR3d⁶:
 - Linear EP-driven AE.
 - 2-moments gyrofluid model for FI
 - Negligible impact of triangularity on AE growth rate

⁶L. A. Charlton et al., J. Comp. Phys 86 270 (1990)

1.0 **(d)**

 $\phi_{ES}^{n=3}(R,z)$

_{0.6}(c)

0.4

0.2

0.0

-0.2

-0.6

Strong NT impact on AEs at TCV

- Strong impact of triangularity on Alfvénic modes:
 - Amplitude reduction
 - Frequency drops
- Uncontrolled changes in many variables:
 - Density rise during NT phase (better confinement)
 - Direct comparison between triangularities is difficult.
- Nonlinear hybrid simulations help unreveal the impact of δ in the Alfvén Eigenmodes and induced fast-ion transport.

- Experimental observations of TAEs in NT
- MEGA: 3D nonlinear hybrid kinetic-MHD
- TAEs in NT and PT

Outline

- Wave-particle resonances in the FI phase-space
- Fast-ion losses induced by TAE in NT and PT

9/32

MEGA⁷: Nonlinear 3D hybrid kinetic-MHD code

Bulk plasma

• Full resistive-MHD model.

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) &= \vec{\nabla} \cdot \left(\nu_n \vec{\nabla} \rho\right) \\ \frac{\partial \vec{U}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla}\right) \vec{U} &= -\vec{\nabla} p + \left(\vec{J} - \vec{J}_{FI}\right) \times \vec{B} \\ &+ \frac{4}{3} \left(\nu \rho \vec{\nabla} \cdot \vec{v}\right) - \vec{\nabla} \times (\nu \rho \vec{\omega}) \\ \frac{\partial p}{\partial t} + \vec{\nabla} \cdot (p \vec{v}) + (\gamma - 1) p \vec{\nabla} \cdot \vec{v} &= \\ &\vec{\nabla} \cdot \left(\chi \vec{\nabla} (p - p_{eq})\right) \\ &(\gamma - 1) \left[\nu \rho \left(\vec{\nabla} \times \vec{v}\right)^2 + \frac{4}{3} \left(\vec{\nabla} \cdot \vec{v}\right)^2\right] \\ &(\gamma - 1) \eta \left(\vec{J} - \vec{J}_{FI}\right) \cdot \left(\vec{J} - \vec{J}_{eq}\right) \\ \vec{E} &= -\vec{v} \times B + \eta \vec{J} \end{aligned}$$

⁷Y. Todo et al., PoP 5 1321 (1998)

2023 Annual TSVV 2 Workshop - P. Oyola

Bulk plasma

• Full resistive-MHD model.

Fast-ions

- *Kinetic description*: markers sampling distribution function.
- Gyrokinetic equation (δf or *full*-f).

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) &= \vec{\nabla} \cdot \left(\nu_n \vec{\nabla} \rho\right) \\ \frac{\partial \vec{U}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla}\right) \vec{U} &= -\vec{\nabla} p + \left(\vec{J} - \vec{J}_{FI}\right) \times \vec{B} \\ &+ \frac{4}{3} \left(\nu \rho \vec{\nabla} \cdot \vec{v}\right) - \vec{\nabla} \times (\nu \rho \vec{\omega}) \end{aligned}$$
$$\begin{aligned} \frac{\partial p}{\partial t} + \vec{\nabla} \cdot (p \vec{v}) + (\gamma - 1) p \vec{\nabla} \cdot \vec{v} &= \\ \vec{\nabla} \cdot \left(\chi \vec{\nabla} (p - p_{eq})\right) \\ \left(\gamma - 1\right) \left[\nu \rho \left(\vec{\nabla} \times \vec{v}\right)^2 + \frac{4}{3} \left(\vec{\nabla} \cdot \vec{v}\right)^2\right] \\ \left(\gamma - 1\right) \eta \left(\vec{J} - \vec{J}_{FI}\right) \cdot \left(\vec{J} - \vec{J}_{eq}\right) \end{aligned}$$

⁷Y. Todo et al., PoP **5** 1321 (1998)

Bulk plasma

• Full resistive-MHD model.

Fast-ions

- *Kinetic description*: markers sampling distribution function.
- Gyrokinetic equation (δf or *full-*f).

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) &= \vec{\nabla} \cdot \left(\nu_n \vec{\nabla} \rho\right) \\ \frac{\partial \vec{U}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla}\right) \vec{U} &= -\vec{\nabla} p + \left(\vec{J} - \vec{J}_{FI}\right) \times \vec{B} \\ &+ \frac{4}{3} \left(\nu \rho \vec{\nabla} \cdot \vec{v}\right) - \vec{\nabla} \times (\nu \rho \vec{\omega}) \end{aligned}$$
$$\begin{aligned} \frac{\partial p}{\partial t} + \vec{\nabla} \cdot (p \vec{v}) + (\gamma - 1) p \vec{\nabla} \cdot \vec{v} = \end{aligned}$$

$$\begin{aligned} \frac{\partial p}{\partial t} + \vec{\nabla} \cdot (p\vec{v}) + (\gamma - 1) p\vec{\nabla} \cdot \vec{v} &= \\ \vec{\nabla} \cdot \left(\chi \vec{\nabla} (p - p_{eq})\right) \\ (\gamma - 1) \left[\nu \rho \left(\vec{\nabla} \times \vec{v}\right)^2 + \frac{4}{3} \left(\vec{\nabla} \cdot \vec{v}\right)^2\right] \\ (\gamma - 1) \eta \left(\vec{J} - \vec{J}_{FI}\right) \cdot \left(\vec{J} - \vec{J}_{eq}\right) \\ \vec{E} &= -\vec{v} \times B + \eta \vec{J} \end{aligned}$$

⁷Y. Todo et al., PoP 5 1321 (1998)

Bulk plasma

• Full resistive-MHD model.

Fast-ions

- *Kinetic description*: markers sampling distribution function.
- Gyrokinetic equation (δf or *full*-f).
- 4th order finite differences in cylindrical coordinates (R, φ, z).

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = \vec{\nabla} \cdot \left(\nu_n \vec{\nabla} \rho\right)$$
$$\frac{\partial \vec{U}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla}\right) \vec{U} = -\vec{\nabla} p + \left(\vec{J} - \vec{J}_{FI}\right) \times \vec{B}$$
$$+ \frac{4}{3} \left(\nu \rho \vec{\nabla} \cdot \vec{v}\right) - \vec{\nabla} \times (\nu \rho \vec{\omega})$$

$$\begin{aligned} \frac{\partial p}{\partial t} + \vec{\nabla} \cdot (p\vec{v}) + (\gamma - 1) p\vec{\nabla} \cdot \vec{v} &= \\ \vec{\nabla} \cdot \left(\chi \vec{\nabla} (p - p_{eq})\right) \\ (\gamma - 1) \left[\nu \rho \left(\vec{\nabla} \times \vec{v}\right)^2 + \frac{4}{3} \left(\vec{\nabla} \cdot \vec{v}\right)^2\right] \\ (\gamma - 1) \eta \left(\vec{J} - \vec{J}_{FI}\right) \cdot \left(\vec{J} - \vec{J}_{eq}\right) \\ \vec{E} &= -\vec{v} \times B + \eta \vec{J} \end{aligned}$$

⁷Y. Todo et al., PoP 5 1321 (1998)

Bulk plasma

• Full resistive-MHD model.

Fast-ions

- *Kinetic description*: markers sampling distribution function.
- Gyrokinetic equation (δf or *full-*f).
- 4th order finite differences in cylindrical coordinates (R, φ, z).
- Explicit 4th Runge-Kutta for time-integration.

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = \vec{\nabla} \cdot \left(\nu_n \vec{\nabla} \rho\right)$$

$$\frac{\partial \vec{U}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla}\right) \vec{U} = -\vec{\nabla} p + \left(\vec{J} - \vec{J}_{FI}\right) \times \vec{B}$$

$$+ \frac{4}{3} \left(\nu \rho \vec{\nabla} \cdot \vec{v}\right) - \vec{\nabla} \times (\nu \rho \vec{\omega})$$

$$\begin{aligned} \frac{\partial p}{\partial t} + \vec{\nabla} \cdot (p\vec{v}) + (\gamma - 1) p\vec{\nabla} \cdot \vec{v} &= \\ \vec{\nabla} \cdot \left(\chi \vec{\nabla} (p - p_{eq})\right) \\ (\gamma - 1) \left[\nu \rho \left(\vec{\nabla} \times \vec{v}\right)^2 + \frac{4}{3} \left(\vec{\nabla} \cdot \vec{v}\right)^2\right] \\ (\gamma - 1) \eta \left(\vec{J} - \vec{J}_{FI}\right) \cdot \left(\vec{J} - \vec{J}_{eq}\right) \\ \vec{E} &= -\vec{v} \times B + \eta \vec{J} \end{aligned}$$

⁷ Y. Todo *et al.*, PoP **5** 1321 (1998)

Simulation setup for the δ comparison

• Flipped equilibrium to isolate the $+\delta$ / $-\delta$ effects on AE activity⁸.

Simulation parameters

- δ f-method for kinetic species.
- #markers = 23M particles
- Multi-*n* simulation (n < 5)

⁸ P. Oyola et al., in preparation

18 July 2023

2023 Annual TSVV 2 Workshop - P. Oyola

Analytical anisotropic slowing-down distribution

$$f_0 \propto e^{-\frac{(\rho-\rho_0)^2}{2(\Delta\rho_0)^2}} \frac{1}{v^3 + v_{crit}^3} erfc\left(\frac{v - v_{birth}}{\Delta v}\right) e^{-\frac{(\Lambda-\Lambda_0)^2}{2(\Delta\Lambda)^2}}$$

Analytical anisotropic slowing-down distribution

$$f_0 \propto e^{-\frac{(\rho-\rho_0)^2}{2(\Delta\rho_0)^2}} \frac{1}{v^3 + v_{crit}^3} erfc\left(\frac{v - v_{birth}}{\Delta v}\right) e^{-\frac{(\Lambda-\Lambda_0)^2}{2(\Delta\Lambda)^2}}$$

Analytical anisotropic slowing-down distribution

$$f_0 \propto e^{-\frac{(\rho-\rho_0)^2}{2(\Delta\rho_0)^2}} \frac{1}{v^3 + v_{crit}^3} erfc\left(\frac{v-v_{birth}}{\Delta v}\right) e^{-\frac{(\Lambda-\Lambda_0)^2}{2(\Delta\Lambda)^2}}$$

18 July 2023

2023 Annual TSVV 2 Workshop - P. Oyola

14 / 32

Analytical anisotropic slowing-down distribution

$$f_0 \propto e^{-\frac{(\rho - \rho_0)^2}{2(\Delta \rho_0)^2}} \frac{1}{v^3 + v_{crit}^3} erfc\left(\frac{v - v_{birth}}{\Delta v}\right) e^{-\frac{(\Lambda - \Lambda_0)^2}{2(\Delta \Lambda)^2}}$$

- Scan in different pitch-angle injections $\Lambda_0 \equiv \frac{\mu B_{\rm axis}}{E}$
- Scan in different fast-ion gradient location

 ρ_0

Initial FI drive is the same for NT and PT

Analytical slowing-down distribution:

$$f_0 \propto e^{-\frac{(\rho-\rho_0)^2}{2(\Delta\rho_0)^2}} \frac{1}{v^3 + v_{crit}^3} erfc\left(\frac{v-v_{birth}}{\Delta v}\right) e^{-\frac{(\Lambda-\Lambda_0)^2}{2(\Delta\Lambda)^2}}$$

- Scan in different pitch-angle injections $\Lambda_0 \equiv \frac{\mu B_{axis}}{E}$
- Scan in different fast-ion gradient location

$$\gamma_{TAE} \propto \beta_{FI} \left(\frac{\partial f_0}{\partial E} + \frac{n}{\omega} \frac{\partial f_0}{\partial P_{\phi}} \right)$$

2023 Annual TSVV 2 Workshop - P. Oyola

 ρ_0

Outline

- Why Negative Triangularity ?
- MEGA: 3D nonlinear hybrid kinetic-MHD
- TAEs in NT and PT
- Wave-particle resonances in the FI phase-space
- Fast-ion losses induced by TAE in NT and PT

TAEs is mitigated in NT vs PT

TAEs appear both in PT and NT:

• PT reaches an energy ~40% higher.

- PT reaches an energy ~40% higher.
- SAW is similar in PT & NT.

Linear growth rate for NT and PT

- PT reaches an energy ~40% higher.
- SAW is similar in PT & NT.
- NT shows a smaller growth rate.

Linear growth rate for NT and PT

- PT reaches an energy ~40% higher.
- SAW is similar in PT & NT.
- NT shows a smaller growth rate.
- This trend is kept independent on the pair of parameters Λ_0 and ρ_0 .

Linear growth rate for NT and PT

- PT reaches an energy ~40% higher.
- SAW is similar in PT & NT.
- NT shows a smaller growth rate.
- This trend is kept independent on the pair of parameters Λ_0 and ρ_0 .

- Experimental observations of TAEs in NT
- MEGA: 3D nonlinear hybrid kinetic-MHD
- TAEs in NT and PT

Outline

- Wave-particle resonances in the FI phase-space
- Fast-ion losses induced by TAE in NT and PT

21/32

Resonant energy exchange in FI phase-space

• Power exchange in FI phase-space shows particlewave resonances.

 $\Delta E > 0 \longrightarrow$ Energy to the FI

 $\Delta E < 0 \longrightarrow$ Energy to the wave

• Two main regions of the phase-space providing energy to TAE.

2023 Annual TSVV 2 Workshop - P. Oyola

Resonant energy exchange in FI phase-space

 Power exchange in FI phase-space shows particlewave resonances.

 $\Delta E > 0 \longrightarrow$ Energy to the FI

 $\Delta E < 0 \longrightarrow$ Energy to the wave

- Two main regions of the phase-space providing energy to TAE:
 - Wave-particle resonances⁹.

⁹Y. Todo, Rev. Mod. Plasma Phys **3**, 1 (2019)

NT damps the lower bounce harmonic

- Alignment of analytical resonances with structures in FI phase-space.
- In PT, lower transit harmonic is most excited.
- In NT, damps lower transit harmonics.

NT damps the lower bounce harmonic.

- Alignment of analytical resonances with structures in FI phase-space.
- In PT, lower transit harmonic is most excited.
- In NT, damps lower transit harmonics.
- Overall energy transfer is larger in PT.

- Experimental observations of TAEs in NT
- MEGA: 3D nonlinear hybrid kinetic-MHD
- TAEs in NT and PT

Outline

- Wave-particle resonances in the FI phase-space
- Fast-ion losses induced by TAE in NT and PT

Synthetic wall in MEGA¹⁰

• 2D wall implemented in MEGA for TCV tokamak.

¹⁰ P. Oyola *et al.*, RSI **92** (2021)

TAE-induced FIL are 3x lower in NT

- 2D wall implemented in MEGA for TCV tokamak.
- Correlated FIL bursts with TAE saturation.

TAE-induced FIL are 3x lower in NT

- 2D wall implemented in MEGA for TCV tokamak.
- Correlated FIL bursts with TAE saturation.

- Fast-ion losses in NT is **smaller** than its counterpart in PT.
 - 3x times lower at the peak.
 - 3x times lower integrated FIL.

TAE-induced FIL are 3x lower in NT

- 2D wall implemented in MEGA for TCV tokamak.
- Correlated FIL bursts with TAE saturation.

- Fast-ion losses in NT is **smaller** than its counterpart in PT.
 - 3x times lower at the peak.
 - 3x times lower integrated FIL.

Conclusions & Outlook

- In experiments, TAEs appear weaker in NT than in its counterpart PT.
- MEGA sims used to isolate the δ effects.
- ~40% lower energy in NT with respect to PT.
- Lower transit harmonics are damped in NT.
- Fast-ion losses are 3x lower in NT.

2023 Annual TSVV 2 Workshop - P. Oyola

Conclusions & Outlook

Work-in-progress

- Extend the scan to several $\delta \in (-0.6, 0.6)$.
- Studying the particle transport by the TAE in both PT and NT.

Height (m)

Conclusions & Outlook

- In experiments, TAEs appear weaker in NT than in its counterpart PT.
- MEGA sims used to isolate the δ effects. •
- ~40% lower energy in NT with respect to PT.
- Lower transit harmonics are damped in NT. •
- Fast-ion losses are 3x lower in NT.

Backup slides

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.