

WPW7X AWP2024

A. Dinklage (TFL), A. Alonso (DTFL), I. Calvo (DTF eurofusion-wpw7x @ipp.mpg.de

FSD Meeting | Culham | 20.09.2023

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Status 7-X, technical risks: plan is stable

NBI beam dump

- Reason for lost tile
- Stresses from poor head conduction; malfunction of screw
- Fixed with replacement

Transformer replacement

- Replacement/repair is difficult and is a schedule risk for OP2.2
- Risk recently mitigated: company confirmed delivery plan compatible with OP2.2 planning

Operation schedule

	Jul '23	Sep '23	Nov '23	Jan '24	Mrz '24	Mai '24	Jul	'24	Sep '24	Nov '24	Jan '25	Mrz '25	Mai '25	Jul 5	25	Sep '25	Nov '25
Mai	ntenance Phase	MP2.2			Operation Phase OP2	2.2					Maintenan ce Phase MP2.3	Operation Phase	OP2.3		Maintenand	e Phase MP2.4	I
					Device Commissioni	ng	0P 2.2 SO- I	Cryo plant long standby	OP2.2 Scienti II	fic Operation	Cryo plant long standby	OP2.3 Scientific Operation		W7-X :hutdo vn			
17.06. – 12.07.2024				plasm	na operation S	2.2		4 weeks to bring systems up									
15.07. – 30.08.2024				operation pause					 main vacation period (school break) magnets remain cold, PV under vacuum TH accessible 								
02.09. – 13.12.2024				plasma operation SO-II OP 2.2					 15 weeks of operation proposal-based continue with 2/3 days alternating rythm 								
20.12.2024 - 14.02.2025			2025	maintenance phase MP 2.3					magnets remain cold, PV under vacuum								
17.02. – 23.05.2025			plasm	na operation S	O-II OP :	2.3		 no time allocated for system commissioning 14 weeks of operation same scheme as OP 2.2 									
14.07.2025 start maintenance phase MP 2.4																	

STATUS AND OP 2.2 7

WPW7X Plan 2024 - Campaign

	Jul '23	Sep '23	Nov '23	Jan '24	Mrz '24	Mai '24	Jul	'24	Sep '24	Nov '24	Jan '25	Mrz '25	Mai '25	Jul	'25	Sep '25	Nov '25
Maiı	itenance Phase	MP2.2			Operation Phase OP2	.2					Maintenan ce Phase MP2.3	Operation Phas	e OP2.3		Maintena	nce Phase MP2.4	I
					Device Commissionir	ig	0P 2.2 SO- I	Cryo plant long standby	OP2.2 Scien II	tific Operation	Cryo plant long standby	OP2.3 Scientifi Operation		W7-X shutdo wn			
Workshop OP2.1							27	27./28.11.23 (zoom)									
	Call	for Pr	opos					Ja	า. 24								
	Proposals								Fe	Feb. 24							
	W7-X Program Workshop								Ар	Apr. 24							
Call for Participation							Ар	Apr. 24									
Session Plan								Ju	Jul. 24								
Response to BEN								Ju	Jul. 24								

23/24 D's & M's

W7X	D3.5	Assessment report on fast-ion generation and divertor exhaust (energy limit 1 GJ)	31.12.23		on track
W7X	D3.6	Report on conducted scenario & campaign preparation (focus: preparation of steady- state scenarios turbulent and core neoclassical transport)	31.12.23		on track
W7X	M17	First Operation with water-cooled PFCs Completed	31.12.23	30.03.23	completed
W7X	M18	1 GJ energy turn-around achieved.	31.12.24	15.02.23	completed
W7X	D3.7	Report on the modelling of plasma heating schemes, plasmas with fast-ions and transport regimes for long steady-state high-beta operation (energy limit 2 GJ)*	31.12.24		Unknown
W7X	D3.8	Report on conducted Scenario & campaign preparation (focus: turbulent and neoclassical transport, high-power steady-state operation)	31.12.24		Unknown
W7X	D3.9	Assessment report on scenarios with optimized transport and high-beta operation (energy limit 6 GJ)*	31.12.24		Unknown

*specification of energy limits to be revised with operator. Heating capabilities are extended slower than expected at the beginning of FP9.

I. 2024 Campaign

EUROfusion Machine Time W7-X										
2022	2023	2024	2025							
18%	23%	30%	30%							

- HR for Participation in the campaign
 - Physics commissioning
 - Qualification of instruments and software
 - Conduction of experiments

TF-I: Core scenario development

Wendelstein 7-X

Summary TF-I: OP2.1 Results vs. Deliverables

Results O1: High Performance Scenarios

- D1: Steady State High Performance
- D2: Density Profile Control
- D3: Impurity Accumulation

Results O2: Heating Scenarios

- D4: Effective Ion Heating
- D5: W7-X Operational Map
- D6: Fast Ion Losses

Results O3: High Beta Scenario

- D7: Plasma Startup at low B
- D8: Improved Confinement at High Beta
- D9: B Field Dependencies

- ✓ 4 Scenarios developed
- ✓ Pellets missing

V

X

X

- ✓ No impurity accumulation
- v Break of T_i clamping w/ 3 NBI + pure ECRH
- ✓ Max heating powers not available (4 NBI + 9.5 MW ECRH)
- ✓ No unexpected wall loads, initial FILD data
 - ICRH Breakdown, NBI+X3 takeover missing
 - No low field scenario developed
 - No low field scenario developed

TF-I Core Scenario Development | 24.04.2023 26

TF-II: Edge Scenario development

Summary (I/II)

- O1: Integrated scenarios for long-pulse operation with PFC heat load control, efficient particle exhaust, and impurity screening:
 - D1: Demonstration of safe divertor scenarios to avoid overloaded plasma-facing components,
 - D2: Determination of trim and/or control coil currents required to correct error fields,
 - D3: Demonstration of effective pumping, high divertor compression, and qualification of fueling actuators,
 - D4: Demonstration of long-pulse operation.

O2: Development of long, stationary divertor detachment scenarios with and without impurity seeding:

- D5: Demonstration of scenarios with long, stationary divertor detachment; in particular, for the high-mirror, highiota and standard configurations,
- D6: Characterize the conditions under which detachment is possible,
- D7: Achieve rapid transition to detachment.

- v multiple scenarios with > 100 MJ energy or > 6 MW heating
- v current dataset incomplete
- pellets missing; need to feed back on more signals
- **v 1** GJ with low performance

- ✓ no high-iota to date
- ✓ higher performance and more sophisticated feedback desired
- X need dedicated scenarios

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK | 24.04.2023

W7-X TF-II OP2.1 / OP2.2 23

TF-II: Edge Scenario development

Summary (II/II)

- O3: Exploration of scenarios compatible with carbon-free operation and tungsten PFCs:
 - D8: Definition of the operation limits associated with plasma-facing components containing tungsten materials,
 - D9: Characterize the scrape-off layer retention for tungsten impurities (eroded from baffle and heat shield),
 - D10: Determination of erosion effects due to seeding impurities,
 - D11: Characterize enrichment/accumulation for low-Z and high-Z impurities.
- > 04: Development of wall conditioning procedures:
 - D12: Condition walls to enable plasmas with high density gradients necessary for high performance
- > 05: Reference discharge:
 - D13: Regular performance of a standardized discharge with defined diagnostic coverage throughout the campaign

- V limits for ECRH (O2-misalignment)
- X no spectroscopic data in SOL
- **√** HEXOS calibration with TESPELs
- no accumulation observed in the core plasma
- ✓ boronization, GDC
- ECWC (systematic study pending)
- X ICWC (not conducted)
- X conditioning ⇔ profiles
- v accomplished
- v gas balance analysis required

TF-III: W7-X Optimization

Summary of OP2.1 for TF-III deliverables

O1: Core transport and stability

- · D1: Documentation of profiles for transport analysis and modeling
- D2: Turbulence in plasma scenario and MC space
- D3: Impurity transport and perturbative experiments
- D4: Neoclassic optimization at increased T_i
- · D5: Reduced equilibrium currents at higher beta and in MC space
- · D6: MHD stability and modes in the MC space

O2: Edge and SOL transport

- · D1: Transport across LCFS and in island divertor SOL
- D2: Validation of edge transport codes
- · D3: SOL width and target heat flux scalings
- D4: Asymmetries and mapping of diagnostics in 3D SOL
- O3: Low-field high beta scenarios
 - D1: Optimization criteria at increased beta
 - D2: High-beta plasma profiles, magnetic fluctuations
 - · D3: Field stochastization and implications for SOL / divertor

data taken, analysis pending accessible scenarios well covered largely limited by technical issues not attempted for lack of scenario accessible scenarios well covered accessible scenarios well covered

lack of robust high beta scenario

good (though not complete) coverage good (though not complete) coverage low field scenarios missing data taken, analysis pending (some diagnostics missing)

no low field scenario

some investigations into intermediate beta were done, assessment pending

II. Preparation and Exploitation

- HR for Preparation
 - Upgrades and hardening of EU diagnostics contributions (PHA, reflectometry, EDICAM, C/O Monitor)
 - Software for safe operation (imaging software)
 - Development of components (MATEO)
 - Development, engineering, tests and qualification of components (gyrotrons, metallic PFCs)
 - Qualification of instruments and software
- HR for Exploitation
 - Analysis and modelling along the achieved progress (see slides above)

WP Milestones

Sequential WP-M ID	WP Milestone Title
WPW7X-2024.M.1.	Call for Participation issued (15.04.24)
WPW7X-2024.M.2.	EU Manning for Task Forces detected (31.07.24)
WPW7X-2024.M.3.	Campaign conducted (15.12.24)
WPW7X-202 4 .M.4.	low- <i>B</i> plasma demonstrated (15.03.23 -> 15.12.24)
WPW7X-2024.M.5	Campaign preparation conducted (31.12.24)

Safe machine operation, PWI and divertor operation: surveillance, wall conditioning, detachment → long-pulse, high-density operation → preparation for reactor relevant PFCs (WPPWIE, WPDIV)

R. Mitteau (w/PrIO)

Short term needs addressed by CINECA (summer 23)

Long term needs

Storage 1 .. 10TB Dataset management tool <80000 GPU hrs

Communicated to ACH

PCR requests WPW7X 2024 (2025 the same)

Manipulator development	Construction and lab test of the original MATEO manipulator	Avoidance of delays Strategic opportunity	35PM (FZJ)	= 154,04
Gyrotron development	 Cavity cooling design Window qualification Tests 	Avoidance of delays Strategic opportunity	11PM (NCSRD) 4PM (ENEA-PoliTo) 3PM (KIT) 11PM (KIT)	= 27,79 = 13,94 = 14,06 = 51,56
Divertor physics design	 Neutral gas calculations Additive manufacturing of heat sinks 	Avoidance of additional delays Avoidance of missing design	4PM (KTT) 10PM (DTU)	= 18,75 = 45,31
Interpretative Modeling and experimental data analysis of OP2.1 and preparation of OP2.2	 Interpretative modeling for high-current OP2.1 discharges; Comparison of HINT/EMC3-EIRENE calculations at recycling rollover point to detachment experiments; Modeling of island localized modes in FMM & beta-effects in lowshear configurations; New integrated probe head building on success of RFA, DEP, and thermocouple measurements (also incl. Langmuir probe); 2D distribution inversion for endoscope filter cameras (4 endoscopes, 20 filter cameras, 2 IR cameras, 12 spectrometers); Cross-validation of reflectometer profiles against other upstream edge diagnostics. Analysis and upgrades of PHA and CO Monitor Analysis of Reflectometry and Modeling Preparation of Pellet Injection Reflection model for PFC surveillance, safety and AI extensions Analysis of dual wavelength Thomson scattering and probe measurement 	Completion of the exploitation of campaigns, Completion of W7-X physics basis Avoidance of delays	25 PM (FZJ) 10PM (IPPLM) 25PM (CIEMAT) 4PM(CEA) 3PM (ENEA)	= 110,03 = 18,02 = 79,82 = 20,42 = 13,94
Campaign	 Scenario development Long pulse operation Turbulence/NC transport entanglement 	Avoidance of delays Full exploitation of EU components Strategic opportunity	20PM	= 92,81
			in total	660,48 k€-CC = 13ppy

Facilities Review: WPW7X View

- W7-X: Indispensable and unique, clearly addressing the objective of Mission 8: bringing stellarators to maturity exploiting the HELIAS concept.
- FULGOR KIT (ECRH test facility): indispensable to avoid time risks for heating upgrades on W7-X
- TJ-II: important high benefit for the preparation of W7-X experiments, complementary magnetic configuration (code validation)
- Turbulence optimized QI stellarator: next-generation QI stellarator optimized for fastion confinement and turbulent transport: proof-of-concept fills an important aspect of the gap of magnetic configurations that can be extrapolated to reactor scale.
- URAGAN-2M: important preparation of W7-X experiments (wall conditioning and start-up)
- TOMAS: important preparation of W7-X experiments (ICWC)
- LHD, Heliotron-J (both Japan), HSX (US): complementary magnetic configurations (code validation) – pursued in International Collaborations within the IEA Technology Cooperation Program on Stellarators and Heliotrons

