DMP Discussion MAST-U IMAS Mappings

May 12, 2023

Adam Parker, Jonathan Hollocombe, Stephen Dixon, Lucy Kogan

Outline

IMAS Introduction

IMAS Data Structure

Previous IDS Mappings

MAST-U Mappings Approach

JSON Mapping Structure

Summary

SULHAN CENTRES

- Integrated Modelling & Analysis Suite (IMAS) Software collection intended for all physics modelling and analysis for ITER
- Based on a standard data format and representation:
 - o includes both experimental and simulation data,
 - o combines machine description,
 - and provides a consistent coordinate system.

More information at https://imas.iter.org*

*ITER account needed

IMAS Data Structure

 Tree structure based on Interface Data Structures (IDS)

Modular entities that separate physics components, diagnostics and machine independent concepts.

• The list of IDSs is defined in the **Data Dictionary** (DD)

Describes structure and nomenclature. Continuously changing and grows depending on needs.

pf_active.circuit[:].current.data
(alpha)
pf_active.circuit[:].current.ti
me
(alpha)
pf_active.circuit[:].identifier
(alpha)
pf_active.circuit[:].name
(alpha)
pf_active.circuit[:].type
(alpha)
pf_active.circuit[:].voltage
(alpha)
(uprio)
C 1 1 1 1 1 1 1 1 1

pf_active IDS

Current Data Dictionary version: 3.38.1*

IDS Version Example

UK Atomic Energy Authority

Core IDS

core_profiles core_sources equilibrium pf active

Heating Systems

ec_launchers ic_antennas nbi

Metadata

summary dataset_description (ids_properties)

Diagnostics

barometry bolometer

calorimetry

- camera_ir
- langmuir_probes
- magnetics
- mse
- radiation
- spectrometer_mass

thomson_scattering

And many many more...

Strategy

UK Atomic Energy Authority

Ideally, all experiments and codes would be developed with IMAS in mind..

IMAS compatibility options:

1. Update each experiment to output straight to IDSs and adapt physics codes to use IDSs for I/O

Time consuming, large amount of effort. Long-term goal?

 Dynamically create IDSs by mapping data in another format to the IMAS structure Strategy used by JET, MAST, WEST, etc.

Strategy

UK Atomic Energy Authority

Ideally, all experiments and codes would be developed with IMAS in mind..

IMAS compatibility options:

1. Update each experiment to output straight to IDSs and adapt physics codes to use IDSs for I/O

Time consuming, large amount of effort. Long-term goal?

2. Dynamically create IDSs by mapping data in another format to the IMAS structure

Strategy used by JET, MAST, TCV, etc.

Previous IDS Mappings

MAST

- Functional but not active maintained
- Minimal signals mapped and not much support to improve
- Mappings in Postgres DB, very dependent on S. Dixon
- Poor performance (hours per ids)

JET

- Extension to the CPO mappings
- Not updated, not complete, not designed to be robust solution
- There has not been interest or support from JET

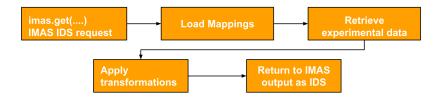
<insert other experiment>

No doubt has their own strategy

Bottom-line, there is no standard method

duplication of effort

Previous IDS Mappings

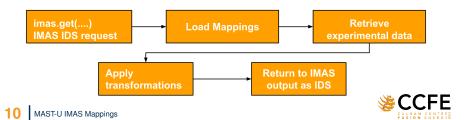

UDA Server CPO2IDS IMAS MAPPING mapping EXP2IMAS Exp2ITM mapping Mappings MAST UDA server JET MDS+ Server in Postgres MAST JET data data CCFE

藏

MAST-U New Approach (WIP)

Motivation and improvements:

- Speed (Previous implementations noted to be slow)
- RO managed (Mappings must be handled by experts - not computing)
- Readability (XMLs or databases can be difficult to read and review)
- Deployment (Available outside of UKAEA, self-serve)
- Active development + extendibility (hard to update and keep up with data dictionary advances)


MAST-U New Approach (WIP)

Backend/Plugin (Github Repo)

- Reroutes IDS/IMAS request to mapping plugin
- Loads experiment mappings
- Written in C++ (interface to legacy C)
- Handles experimental data retrieval, type conversion, deserialisation, tree traversal, and data output

Mappings (UKAEA Repo)

- Mappings from IDS to MAST-U signal defined in JSON mapping files per IDS
- Human readable (somewhat)
- Managed by ROs and experts
- Handles multiple DD versions and updates

MAST-U New Approach (WIP)

Note, will be extended to include multiple DD versions

Mapping type / transformations: (~90% of cases)

- Value mapping
- Direct unmodified mapping
- Simple operation (+/× by float)
- Slightly more complicated expression

... and then 10% of everything else

JSON Structure - Introduction

```
ł
    "PF_COIL_NAMES": [
        "D1U", "D2U", "D3U", "D5U", "D6U", "D7U", "DPU", "P4U",
        "P5U", "P6U", "PXU", "D1L", "D2L", "D3L", "D5L", "D6L",
        "D7L", "DPL", "P4L", "P5L", "P6L", "PXL"
    1.
    "PF_COIL_NAMES_GEOM": [
        "d1_upper", "d2_upper", "d3_upper", "d5_upper", "d6_upper",
        "d7_upper", "dp_upper", "p4_upper", "p5_upper", "p6_upper",
        "px_upper", "d1_lower", "d2_lower", "d3_lower", "d5_lower",
        "d6_lower", "d7_lower", "dp_lower", "p4_lower", "p5_lower",
        "p6_lower", "px_lower", "p1_inner", "p1_outer", "pc"
    ],
    "i_COIL": "{{ at(PF_COIL_NAMES, indices.0) }}"
    "i_COIL_GEOM": "{{ at(PF_COIL_NAMES_GEOM, indices.0) }}"
    "UNIT_SF": 1000.
}
```

Global keys, values, and names unique to each experiment/IDS (– Used in templating and expression evaluation) Note, **indices** [*array of ints*] is defined by IMAS per request

JSON Structure - Value/Map

```
"pf_active/coil/#/element/#/geometry/geometry_type": {
    "MAP_TYPE": "VALUE",
    "VALUE": 2
    "COMMENT": "Can take many types (3.5, Hello, [3.4, 3.6, 4.3])"
},
"pf_active/coil/#/element/#/geometry/rectangle/width": {
    "MAP_TYPE": "MAP",
    "KEY": "/magnetics/pfcoil/{{ i_COIL_GEOM }}",
    "VAR": "geom_elements.dR",
    "PLUGIN": "GEOMETRY"
},
```

"MAP_TYPE" Keyword describes the type of mapping operation

"VALUE" – IDS path assigned straight from JSON value "MAP" – MAST-U data retrieval and direct mapping to IDS path

Note, "PLUGIN" enum "base" or "geom" refers to the MAST-U plugin for data access

JK Atomic

JSON Structure - Offset/Scale

```
"pf_active/coil/#/current_offset" : {
    "MAP_TYPE": "OFFSET",
    "KEY": "/AMC/ROGEXT/{{ i_COIL }}",
    "OFFSET": 3.0
    "PLUGIN": "UDA",
},
"pf_active/coil/#/current_scale" : {
    "MAP_TYPE": "SCALE",
    "KEY": "/AMC/ROGEXT/{{ i_COIL }}",
    "SCALAR": 2.5
    "PLUGIN": "UDA",
},
```

"OFFSET" – Mirror of "MAP" transformation with the added step of adding "OFFSET" parameter to the data before returning to request

"SCALE" - Multiply data by "SCALAR" parameter before mapping

UK Atomic Energy Authority

14 MAST-U IMAS Mappings

JSON Structure - Expression

```
"pf_active/coil/#/element/#/area": {
    "MAP_TYPE": "EXPR".
    "PARAMETERS": {
        "WIDTH": "pf_active/coil/#/element/#/geometry/rectangle/width",
        "HEIGHT": "pf_active/coil/#/element/#/geometry/rectangle/height",
    },
    "EXPR": "WTDTH*HFTGHT"
},
"magnetics/b_field_pol_probe/#/poloidal_angle": {
    "MAP_TYPE": "EXPR".
    "PARAMETERS": {
        "Z": "magnetics/_temp/pickup/#/unit_vector/z",
        "R": "magnetics/_temp/pickup/#/unit_vector/r"
    },
    "EXPR": "2*pi-atan(Z/R)"
}
```

"EXPR" – The string in the "EXPR" field is parsed and evaluated before mapping. The "PARAMETERS" dictionary maps the variables for use in the expression, "globals" keys are also available.

Halfway parameters preceded by an "_"

JK Atomic

JSON - Dimension/Shape_of

```
"pf_active/coil/Shape_of" : {
    "MAP_TYPE": "VALUE"
    "VALUE": "{{ len(PF_COIL_NAMES) }}"
},
"pf_active/coil/#/element/Shape_of" : {
    "MAP_TYPE": "DIMENSION",
    "DIM_PROBE": "pf_active/coil/#/element/#/geometry/rectangle/z"
},
```

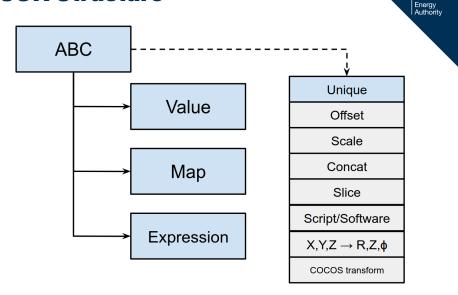
"DIMENSION" — Special case of mapping, where IMAS requires a successful Shape_of request for array structures. However, for MAST-U data is structured differently so you need to retrieve a signal to then calculate the size.

In this case for example, IMAS is requesting the number of elements for this coil. "DIM_PROBE" is the element z position which returns a vector from MAST-U

From there the size can be returned \longrightarrow Shape_of

JSON Structure - Function Library

UK Atomic Energy Authority


Still a work in progress...

```
"pf_active/circuit/#/connections" : {
    "MAP_TYPE": "CONNECTIONS",
    "...": "..."
},
"mse/channel/#/polarisation_angle" : {
    "MAP_TYPE": "SLICE",
    "KEY": "AMS/GAMMA/POLARISATION_ANGLE"
},
"ids_name/angle/phi" : {
    "MAP_TYPE": "COCOS",
    "KEY": "mse/channel/#/polarisation_angle",
    "FROM": 11,
    "TO": 17
},
```

Abstract mapping base class gives the freedom to define a library of helper functions as separate mapping types if they're used often and as they are needed

JSON Structure

藏

UK Atomic

Dependencies

NIohmann JSON for Modern C++ Documentation Repository

UK Atomic Energy Authority

Inja - Template engine for modern C++, loosely inspired by jinjaDocumentationRepository

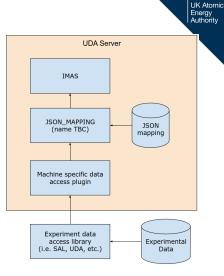
ExprTk - The C++ Mathematical Expression Toolkit LibraryDocumentationRepository

GSL - Guidelines Support Library for C++98, C++11 above Many implementations, Microsoft/GSL or header-only gsl-lite

Boost - Boost C++ Libraries Documentation

Deployment

(Relatively) Easy to install at site:


- IMAS
- UDA
- JSON mapping plugin
- JSON mapping files

> mastu.open()

```
> ids = mastu.get("wall")
```

LIVE DEMO

1.1

Management

UK Atomic Energy Authority

Mapping repository can be private and local to the experiment If made public, easier to support but not necessary

CI JSON validation tests:

- Valid JSON check
- Schema validation
- Template completion
- Expression evaluation

Future test implementation:

- Mapping of each IDS for Standard Candle shot
- Verify important IDS fields present (discussed last week)

Documentation on mappings hosted on repository GitPages Skeleton templates can be easily provided

MAST-U Mapping Status

Unmapped	Process started	'availa		Deployed and fully available	
*as of Data Dictionary v3.38.1					
Interface Data Structure (IDS)		Status*	Notes and	Comments	
magnetics					
pf_active					
pf_passive					
wall			Essential signals, e.g., limiter coords.		
mse			Contacted ROs, initial mappings started		
nbi			Contacted ROs, initial mappings started		
thomson_scatte	ering		Contacted ROs, initial mappings started		
pulse_schedule)		Contacted ROs, initial mappings started		
summary			Required by UKAEA Computing Division		

Timeline + Demand

Task began as a nice to have

- \rightarrow Several ITER IA tasks now depend on MAST-U mappings
- \rightarrow EuroFusion/F4F support for imasification
- \rightarrow Contacted by collaborators in Italy and Finland asking for MAST-U IDSs

However, difficulties in acquiring support from experts has caused delays

Timeline:

- Initial release of plugin end of June
- Write white paper following months
- Training event planned at ITER October/November

Development Plan:

- Performance improvements
- Access layer 5
- Map other IDSs for MAST-U

Designed to be experiment agnostic

Supported by ITER:

- Mentioned in submitted IAEA TM abstract (S. Pinches)
- IMAS AL meetings: "shall form the basis for a general mapping plugin"

gnosiic

- Initial IMAS mapping infrastructure in place for MAST-U
- Mapping of IDSs for MAST-U is ongoing
- If interested in using the tool, happy to support
- Contact : adam.parker@ukaea.uk or Teams

Questions?

