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schedule & organisation

https://indico.euro-fusion.org/event/2729/
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•please check your SDCC login (ssh -X.., nomachine)
•or: check gateway access
•register to slack channel: imasusers.slack.com  #ep-workflow-training
•we plan to record first session for later use (Q&A not recorded)

schedule & organisation

http://imasusers.slack.com
http://imasusers.slack.com
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continuous improvement 

is better than

delayed perfection

please report bugs and shortcomings!
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for scaling from TCV-AUG-JET,…   to JT-60SA-DTT-ITER-DEMO-any other other device, we need:

4. self-organisation - back reaction of 
EP transport on profiles and 
background transport

3. EP transport and losses

2. non-linear mode evolution, 
saturation mechanisms

1. mode stability 
linear global kinetic e.m.

non-linear global kinetic e.m.

non-linear/quasi-linear global kinetic + 
long time scales (source + sink)

required model:

non-linear/quasi-linear global kinetic + background 
transport

modelling hierarchy for plasmas with significant energetic particle pressure
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linear modelling hierarchy: linear Alfvénic mode structures are non-linearly robust→ 
important ingredient for non-linear/ transport models

analytical

global kinetic
global fluid

local fluid
local kinetic

linear global kinetic e.m.

non-linear global kinetic e.m.

non-linear/quasi-linear global kinetic + 
long time scales (source + sink)

required model:

non-linear/quasi-linear global kinetic + background 
transport

modelling hierarchy for plasmas with significant energetic particle pressure
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analytical

global kinetic
global fluid

local fluid
local kinetic

linear global kinetic e.m.

non-linear global kinetic e.m.

non-linear/quasi-linear global kinetic + 
long time scales (source + sink)

required model:

non-linear/quasi-linear global kinetic + background 
transport

modelling hierarchy for plasmas with significant energetic particle pressure

EP-Stability WF

linear modelling hierarchy: linear Alfvénic mode structures are non-linearly robust→ 
important ingredient for non-linear/ transport models



EP-Stability WF training course, July 2023

EP stability WF: design criteria

•automate analysis of stable/unstable Alfvén eigenmodes:
•for many equilibrium time slices
•for many relevant toroidal mode number (Tokamak only, axisymmetry)
•relevant types of modes

•use hierarchy: 
•start with simple, analytical model
•use local model
•use global model

•understand physics and numerical challenges: 
•determine (kinetic) continuous spectra
•investigate local vs global damping mechanisms
•determine resolution requirements for expensive runs

•determine sensitivity of AEs: look at series of equilibria, include uncertainties 
• be general: use IMAS mhd_linear IDS to store results - each model is exchangeable  (e.g. 

spectrum: LIGKA or Falcon)
• be fast: use reduced models where possible
• be robust enough to use it as fundamental ingredient for transport models



EP-Stability WF training course, July 2023

• analyse L-mode,H-mode and transition phases:  
beat infamous problem of AE stability sensitivity to 
profiles - compare trends instead of single time slices 
• compare local and global models 
• systematic uncertainty quantification feasible 
• applied also to TCV, JET, JT-60SA, ITER

L-mode H-mode

n=2 TAE

integrated data analysis 
+


TRVIEW(IMAS 
interface) 


+

EP-WF: LIGKA  local 


+

EP-WF: LIGKA  global    

to
r. 

m
od

e 
nu

m
be

r • automated processing of 160 time slices based on IDA 
equilibria and profiles 

• fully implemented in IMAS, ensuring reproducibility 

[s] [s]

[Lauber, EPS 2022, Popa 2020-2023]

motivation: present-day experiments
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Overview: plasma models(I)

Vlasov, Fokker-Planck Equation 

➞

➞

Kinetic Wave
 Equations 

Gyrokinetic Theory

➞
➞

➞

Kinetic Description

MHD

Fluid Equations

perturbative

Kinetic MHD Models
 

➞ ➞

Dielectric Tensor

Gyrokinetic MHD

Self Consistent

➞

Linearization

Equivalent

Limit

Reduce from 6-D to 5-D
Building Moments

by Integration
over Velocity Space

➞

non-perturbative

CAS3D-K ,NOVA-K
       CASTOR-K

LIGKA, KIN2DEM
GYGLES

TORIC,PENN,LEMAN

[Cheng,1991]

[Qin, 1999]

[Littlejohn, Hahm,Brizard]

[Stix, Brambilla]

IPP Colloquium, Garching, January 2009 5

non-linear: ORB5,EUTERPE,GENE,GTC
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straight peroidic cylinder

Shear-Alfvén Modes

• MHD shear Alfvén dispersion relation: ω = k∥vA;

• in a straight cylinder: k∥ = 1
R0

(n − m
q(r)); vA(r) = B(r)/ µ0min(r); q(r) = rBz/RBθ

2ω /ω2
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Alfvén Continuum - decoupled 
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wave packet is strongly damped by continuum

DPG-Frühjahrstagung , Greifswald, April 2009 5
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dispersion relation:

straight peroidic cylinder

Shear-Alfvén Modes

• MHD shear Alfvén dispersion relation: ω = k∥vA;

• in a straight cylinder: k∥ = 1
R0

(n − m
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DPG-Frühjahrstagung , Greifswald, April 2009 5

n: toroidal/axial mode number m: poloidal mode number

periodic cylinder:   phase mixing, i.e. strong damping

Towards small-scale and low-frequency modes

Local and global description of the Kinetic Alfvén Wave and Ion Acoustic Wave

• inclusion of ion compressibility in LIGKA (H.L. Berk, UT
Texas, Austin)

• improved mesh refinement in kinetic part: near q = 1 surface
10 grid points per ⇥i (electron skin depth!)

• limitation due to FLR-expansion: ⇥ik� ⇥ 0.5

for JET parameters, B0 = 3.53T, R0 = 2.96m, m = 1, n =
1,� ⇤ 2%

Radius

1

 2

3

q(r)

T  (keV)e

Fachbeirat, Greifswald, June 2007 21

n(r) [1019]    

minor radius

idea of Alfvén wave heating: efficient absorption of external wave at resonant location
[W. Grossmann, J. Tataronis, Z. Phys. 261, 217 (1973);  A. Hasegawa, L. Chen, Phys. Rev. Lett. 35, 370 (1975) ]

why a kinetic model?
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Model

Ideal MHD Limit, ’Reduced Kinetic Limit’, Sound and Drift Waves

• Ideal MHD Limit: QN equation reduces to φ = ψ
system is reduced to shear Alfvén equation with singularity ω = k∥vA

• ’Reduced Kinetic Limit’: sheared slab

[1 + ξeZ(ξe) + 1 + ξiZ(ξi)](φ − ψ) = Te/Tiϱ
2
i∇

2
⊥φ

∇⊥ ·
ω2

v2
A

∇⊥φ +
∂

∂s
∇2

⊥
∂ψ

∂s
=

3

4
ϱ2

i

ω2

v2
A

∇4
⊥φ

Can be combined into one single fourth order equation as used by Berk,Mett, Lindberg [Phys. Fluids B
(1993)] or Fu, Berk, Pletzer [PoP, 12 (2005)]

• Applying the cold ion, hot electron expansion to the QN equation results in:

ϱ2
sk

2
⊥φ = (

c2
sk

2
∥

ω2
− 1 +

ω∗e

ω
)(φ − ψ);

ω2

v2
A

φ − k2
∥ψ = 0

IAEA TCM, York, March 2007

•it was early recognised that kinetic effects need to be included to understand the absorption 
mechanism  [A. Hasegawa, L. Chen, Phys. Rev. Lett. 35, 370 (1975), A. Hasegawa, L. Chen, Phys. Fluids 19 (1976) 1924]

•use quasi-neutrality and shear-Alfvén law including lowest order finite Larmor radius effects 
and Landau damping-like terms (LD):

BRIEF ARTICLE

THE AUTHOR
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•if mode is purely Alfvénic,   Φ= ψ     and     E//=k// (Φ- ψ)  =  0       is result of model 1/2

•polarisation gives important information on nature of perturbation: in Tokamaks, predominantly 
Alfvénic, predominantly electrostatic and mixed polarisation are very common

•Alfvénicity can be determined in MHD limit - FALCON code [M. Falessi]

why a kinetic model?
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Kinetic Alfvén waves [Hasegawa, Chen 1974]

reduced kinetic limit: mode conversion to the kinetic Alfvén wave

S(φ − ψ) = Te/Tiϱ
2
i∇

2
⊥φ

∇2
⊥
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v2
A

φ + ∇2
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∥ψ = 3
4ϱ

2
i
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radial coordinate (s)

electrostatic

electromagnetic

Singularity of the MHD operator is resolved by fourth order terms: electric field
strongly damped for short wavelengths

IPP Colloquium, Garching, January 2009 10

long-wavelength-limit

deviations due to KAW coupling ’break Alfvénic state’ [Walén 1944, Chen&Zonca RMP 2016]

this helps when trying to find least damped modes in presence of dense continuum - automatisation!

global solutions change character
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Toroidal Alfvén Eigenmodes [Cheng, 1986]

2ω /ω2
A
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m=2
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Alfven Continuum - decoupled
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0 1
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⇒
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DPG-Frühjahrstagung , Greifswald, April 2009 9

toroidal Alfvén eigenmodes (TAE)

analogous to electron 
bands in solid state 
physics

ASDEX Upgrade
Ergebnisse

Globale Struktur der TAE Moden

m=2

m=3

TAE: gerade Mode
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Juli 2006 16

TAE: even mode TAE: odd mode

[Cheng, Chen & Chance Ann. Phys.1985, Cheng & Chance 1986 Phys. Fluids 29]

qTAE=(m+1/2)/n
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Physics of Fluids B: Plasma Physics 4, 1806 (1992); https://doi.org/10.1063/1.860455

Global analysis:

→delta functions, continuum dampingcylinder:

torus:

coefficient for 2nd order operator
does not vanish for certain ω;
• no local, delta-type functions 

possible for bands of certain ω
• global solutions possible

[e.g. Berk 1992]
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2	π	R

q=1	
q=2	
q=1.5

TAE:	km,//=-km+1,//
kTAE=1/(2qTAER)=	(q=1.5,n=1,m=1,m+1=2)=1/(3	R)

λTAE=2π/k=2	(2	π	R	qTAE	)=3	(2	π	R)	

TAE visualisation:

https://en.wikibooks.org/wiki/A-level_Physics_%28Advancing_Physics%29/Standing_Waves#/media/File:Harmonic_Standing_Wave.gif

TAE is formed by two counter-propagating waves:

ETAE
nodes

nodes

ωTAE=vA/2qTAER

formula implemented
in reduced model 5 + beta correction [Fesenyuk PoP 2013]
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symmetry-breaking induces more gaps

reduced MHD spectra available using model 6
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NAE,EAE,TAE

other gaps induced by geometry...
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IPP Colloquium, Garching, January 2009 16

non-local continuum damping

continuum damping: 
mode conversion to 
kinetic Alfvén wave

Kinetic effects (I)

Mode conversion KAW-TAE: continuum damping

Singularity of the MHD operator is resolved by fourth order terms
Inwards propagating kinetic Alfvén wave is excited [Jaun 1998]

IPP Colloquium, Garching, January 2009 18

[Lauber,2005]

 [F. Zonca et al PRL 1992, Rosenbluth et al 1992, Berk et al 1992]
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NAE,EAE,TAE

other gaps induced by geometry...
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radiative damping: 
kinetic Alfven waves 
‘tunnels’ into TAEradiative damping [Mett, Mahajan, 1992]

Kinetic Alfvén Waves can ’tunnel’ into the TAE

 0

 0.2

 0.4

 0.6

 0.8

 1

fr
eq

ue
nc

y

 0  0.2  0.4  0.6  0.8  1
radius

TAE

radiative damping

Ei
ge

nf
un

ct
io

n

 0  0.2  0.4  0.6  0.8  1
radius

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

D
a
m
p
i
n
g
 
R
a
t
e
 
[
%
]

gyroadius [mm]

even if there is no direct intersection, the global modes can pick up kinetic-Alfvén-wave structure:
dependence on gyro-radius and shear

DPG-Frühjahrstagung , Greifswald, April 2009 14

[Lauber, PoP 2005]

[Mett, Mahajan, 1992
Berk 1993, Candy & Rosenbluth 1994, 

Breizman& Sharapov 1995,Pinches 
2015]

radiative damping: cross-scale coupling of global shear 
Alfvén waves and KAWs 

coupling strength 
determined by non-
ideal parameter:

formula implemented
in reduced model 5
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TFTR: [Wong, Phys. Lett A,1996] 

global mode driven by EPs - short wave-length structure 
detected at intersection points with continuum

microwave scattering

great confirmation of theory - demonstrating non-local nature of KAW physics

KAWs in the experiment
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• gyrokinetic moment equation (GKM):

• quasi neutrality (QN):

• non-adiabatic response for perturbed distribution function:

global, linear GK model
LIGKA [Qin 1998, Lauber 2003, JPC 2007, Lauber PLREP 2013, Bierwage&Lauber 2017, Lauber JPCS 2018]

propagator →resonance

shear Alfvén law

‘pressure’ tensor - curvature drift coupling

free energy

reduced MHD as limit;
contains formally
‘all' electrostatic

and electromagnetic
instabilities

ωAE- ωprec - k・ωb = 0
ωAE- ωprec - (nq-m+k)・ωt = 0

resonances (circ/trapped):

{

https://git.iter.org/projects/STAB/repos/ligka/

for all species , including electrons 
and energetic particles
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− ω2

ω2
A0

∇⊥
n̂B2

0

B2
∇⊥ψ + ∇(∇∥ψ) × b ·∇(

∇×B0

B
) + (B ·∇)

(∇×∇×∇∥ψ) · B
B2

+

+ µ0P0
b

B
×

[
(b ·∇)b +

∇B

B

]
·∇

[
∇P̂

B
(b ×∇)ψ

]

= 0 (85)

with P̂ and n̂ are the normalised pressure resp. density. To compare with the equation for

shear Alfvén modes derived from the standard MHD model, one identifies ∇P
iωB (b ×∇)ψ

with the perturbed pressure and uses the vector identity (66). Then one obtains for the

pressure term (4-th addend):

µ0∇P1 ·∇× B

B2

From the ideal MHD side, line (85) can be derived using ∇j1 = 0, the linearised force

balance and ideal Ohm’s law [1]. Therefore all ideal MHD results can be recovered from

the GKM equation.

4.3 α-Particles

Due to their high energies compared to the background, fusion born α-particles are not

Maxwellian. Instead, one usually chooses the following distribution function:

F0 = CψF0ψ · CE

E3/2 + E3/2
c

Erfc[
E − E0

∆E
] (86)

This expression is called ’slowing-down’ (see figure 8), because it describes the drag of

the background electrons and ions on the fusion born α’s, derived from the Fokker-Planck

equation under the assumptions that D and T have the same energy Ti and the energy

spectrum is approximately Gaussian [39].

For F0ψ one often uses 1/(exp[(ψ − ψ0)/∆ψ]+1) or also (1−s2)3 with s ∝
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with P1=

QN: 

GKM:

neglect polarisation, FLR:    Φ=Ψ

GKE:                neglect non-adiabatic part:  h=0 

reduced MHD limit
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, N(xm) = Ñ(xi,m)�Ñ(xe,m) and the polarisa-

tion term P = ⇤(�0�1)
⌦
1� ��

i
�

�
1+⇥i

�0G0
�0�1

⇥↵
. Here, the relation ⌃±

de,m = �⇤⌃±
di,m was used.

The velocity phase space integralsin the GKM equation (23) are carried out similarly.

The final result is:

e2ana

⌃2Ta
�m,p

⌦�
(⌃n

d )
2 � (⌃r

d)
2
⇥
H̃m(xm�1) +

�
(⌃n

d )
2 � (⌃r

d)
2
⇥
H̃m(xm+1)

↵
⇧m

+
e2ana

⌃Ta

⇤

⌥⌥⇧
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contains electrostatic 
waves(sound, drift)

off-diagonal elements (sidebands)

polarisation terms

QN: write equations for neighbouring poloidal harmonics, since coupling due to curvature drifts arises:

the e.m. kinetic dispersion relation in Tokamak geometry part I: QN
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Hm(xm) = H̃m(xm,i) + ⇤H̃m(xm,e)

where the columns of the matrix in line (35) refer to m0 � 1,m0,m0 + 1 and the rows to

p0 � 1, p0, p0 + 1 for a certain mode with mode number m0. Similarly, the summations in

the GKM equation can be carried out:
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1.3 Velocity phase space integration

The velocity phase space integration can be performed in �, Y or v⌥, v⌃ coordinates.

Whereas in LIGKA the constants of motion are retained as variables, for analytical pur-

poses it is easier to continue with v⌥, v⌃. However, one can easily prove that
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mZ(xm))

where

xm =
⌥

|k⌥,m|vth
; t =

v⌥
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; vth =

⌦
2T

m

one derives for the ’symmetric’ part of the non-adiabatic perturbed density response (eqn

19)
�eana�m,p

Ta
D̃(xm)(⇧m � ⌃m)

The vd-dependent part of eqn 19 becomes:
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1.2 Analytical recovery of compressible MHD features

For obtaining the dispersion relations in the low (� < �ti,�bi) and intermediate (�ti,�bi <

� < �te,�be frequency regime, the coupling of the pure Alfén wave, the sound wave and

the drift waves has to be kept. In the system of our equations this coupling is due to the

FLR terms and, more importantly for low frequencies, due to the drifts. Specifically, it will

turn out that the geodesic curvature component of vdr ⇧ sin(⇤) is crucial for recovering

the BAE or GAM dispersion relations. This implies that the poloidal sidebands of the

density and the pressure perturbations have to be retained. Acting on the perturbed

potentials ⌥(r, ⇤, , t) = ⌥m(r)e�i⌃t�im⇥+in⌥ the drift operator can be rewritten in a more

convenient form (for numerical evaluation via a drift-kinetic code like HAGIS [?]):
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In the following orbit and flux surface averages are needed. Applying these operations

cancel the last terms of eqn (29) to lowest order in ⇥: since in the following we will

simplify the system of equations by applying the fast circulating particle approximation

�tt̂ ⌃ ⇤and �t ⌃ |v⇤|/qR0, it is obvious that this term vanishes due to (b ·⌦⇤) ⌃ 1/qR0 .

(Note that �t is independent from ⇥ to first order for � = 0.)

Using the approximation vd · ⌦r =
v2th,i
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b ⇤ ⌅ · ⌦r ⌃ �v2th,i
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sin(⇤)/R0 and �̃n
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r , equation (29) can be further simplified into:
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Here, �prec = ⌥n( ̇� q⇤̇)� is the precessional drift frequency.

After carrying out the angle integration, the following definition will be useful:
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1
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m

r
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�r
) = �n
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With these simplifications the propagator coe⇧cients ak,m,⌅, aGk,m,⌅,Kk,m,p,⌅ andKG
k,m,p,⌅

can be reduced to:
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and therefore:

ak,m,⌅=+1 = �k ak,m,⌅=�1 = �k ak,m,+1 = a�k,m,�1

definitions

τ=Te/Ti

presently being
extended to other

distributions
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When combining these two results, adding the adiabtic part and the polarisation term

and summing over electrons and ions the QN eqn with sidebands can be written as

m+1 

m⇥=m�1

�m⇥,pD
m(xm⇥)(⌅m⇥ � ⇧m⇥) =

(39)
⇤

⌥⌥⇧

Pm�1 ⇤Nm(xm�1)⌃
+
di/⌃ 0

⇤Nm�1(xm)⌃
�
di/⌃ Pm ⇤Nm+1(xm)⌃

+
di/⌃

0 ⇤Nm(xm+1)⌃
�
di/⌃ Pm+1

⌅

��⌃

⇤

⌥⌥⇧

⇧m�1

⇧m

⇧m+1

⌅

��⌃ (40)
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. Here, the relation ⌃±

de,m = �⇤⌃±
di,m was used.

The velocity phase space integralsin the GKM equation (23) are carried out similarly.

The final result is:
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Using again the relation ⌃±
de = �⇤⌃±

di one can sum over electrons and ions again:
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with

Hm(xm) = H̃m(xm,i) + ⇤H̃m(xm,e)

Kinetic Alfvén Eigenmodes at ASDEX Upgrade 2

1. Introduction

Although beta-induced Alfvén eigenmodes (BAEs) [1, 2] and geodesic acoustic modes

(GAMs) [3] are closely related and are in fact in the long wave-length limit described

by the same dispersion relation [5, 6, 7, 8], their experimental manifestation and

their consequences for tokamak research are quite di⇥erent. Whereas BAEs are

electromagnetic, n ⇥= 0 perturbations, driven by energetic particles, usually located

in the plasma core at roughly 30% to 50% of the toroidal Alfvén eigenmode (TAE)

frequency, the GAMs are n = 0, mostly electrostatic modes closely related to the zonal

flow and turbulence physics especially at the plasma edge.

Their kinetic dispersion relation has been first derived by Zonca [18] in the ballooning

representation. Recently, several alternative derivations (e.g. by Nguyen via Fourier

expansion, high-q limit [7] and by Elfimov via dielectric tensor formulation [9]) were

reported. Furthermore, also elongation e⇥ects for the GAM dispersion relation were

analytically and numerically investigated [10, 11].

The relevant dispersion relation was re-derived [14] for the gyrokinetic model [22]

underlying the eigenvalue code LIGKA [13]. This derivation is also based on a Fourier

expansion in the poloidal angle but keeps the full resonances, i.e. is valid for low q.

Keeping the m ± 1-sidebands, retaining the geodesic curvature and the sound wave

coupling by an appropriate approximation of the propagator integrals, leads to:
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, Nm(xm) = Ñm(xi,m)� Ñm(xe,m),

D̃(x) = (1 � ⇥⇤
⇥ )xZ(x) � ⇥⇤

⇥ �
�
x2 + xZ(x)(x2 � 1

2)
⇥
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2 + x6) + 2x2 + x4 + x6 and Z(x) the plasma dispersion

function. Although obtained in a completely di⇥erent way, eqn. (1) is very similar

(same coe⇤cients) to the ballooning formulation result. The asymmetry in the ⇤⇥ terms

(omitted in the first derivation based on LIGKA’s set of equation in [14]) was pointed

out by Zonca [20, 21].

The aim of this paper is the following: in the first part, after describing the experimental

parameters, the validity of including only circulating thermal ions with vanishing

perpendicular energy, i.e. � = µB0/E = 0 is investigated. All analytical models except

a very recent work including deeply trapped particles [12], rely on this simplification.

Due to the one-to-one correspondence of the analytical and the numerical coe⇤cients in

a linear eigenvalue code, the correctness of the numerics and the validity of the analytical

approximations can be checked.

combine with QN (Φ-ψ)  ⇒ dispersion relation (no fast ions):

Σm

Here, H is the Heaviside step function, so that H vanishes for trapped particles and equals

unity for circulating particles. ⇧ equals 1 for co-passing and �1 for counter-apassing

particles.

The non-adiabatic density response for circluatling particles of the species a can be written

as:
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Here,
1

b(r, ⇥)
=

B(r, ⇥)

B0
=

1

1 + � cos(⇥)

For obtaining the dispersion relation and for constructing the weak form, one has to inte-

grate over the whole plasma volume. This operation requires a trivial toroidal integration,

a radial integration (which is carried out numerically by introducing a finite element for-

mulation) and a poloidal angle intergration that is carried out analytically, leading to the

following expression for the non-adiabatic density response:
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Here, b(r, ⇥) vanishes since J� = 1 + � cos(⇥) and therefore
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The gyrokinetic moment equation (or parallel current equation) completes the system:

� �2⌃⌅
1

v2A
⌃⌅⌃+

 
⌃(⌃⌥)⇧ ⇤ b

⌦
·⌃(

µ0j0⇧
B

) + (B ·⌃)
(⌃⇤⌃⇤ (⌃⌥)⇧) ·B

B2

= �(i�)2µ0

⌥

a

ea
� vd,a ·⌃

i�
J0fad

3v (21)
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(current equation)

 ballooning formulation [Zonca PPCF 1996,2009, Gotit lectures, Garbet 2006],  [Lauber PPCF 2009]

(LIGKA MODEL 3/4):

the e.m. kinetic dispersion relation in Tokamak geometry part II: GKM

extension trapped particles [I. Chavdarovski et al, 2014…] 
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Kinetic Alfvén Eigenmodes at ASDEX Upgrade 2

1. Introduction

Although beta-induced Alfvén eigenmodes (BAEs) [1, 2] and geodesic acoustic modes

(GAMs) [3] are closely related and are in fact in the long wave-length limit described

by the same dispersion relation [5, 6, 7, 8], their experimental manifestation and

their consequences for tokamak research are quite di⇥erent. Whereas BAEs are

electromagnetic, n ⇥= 0 perturbations, driven by energetic particles, usually located

in the plasma core at roughly 30% to 50% of the toroidal Alfvén eigenmode (TAE)

frequency, the GAMs are n = 0, mostly electrostatic modes closely related to the zonal

flow and turbulence physics especially at the plasma edge.

Their kinetic dispersion relation has been first derived by Zonca [18] in the ballooning

representation. Recently, several alternative derivations (e.g. by Nguyen via Fourier

expansion, high-q limit [7] and by Elfimov via dielectric tensor formulation [9]) were

reported. Furthermore, also elongation e⇥ects for the GAM dispersion relation were

analytically and numerically investigated [10, 11].

The relevant dispersion relation was re-derived [14] for the gyrokinetic model [22]

underlying the eigenvalue code LIGKA [13]. This derivation is also based on a Fourier

expansion in the poloidal angle but keeps the full resonances, i.e. is valid for low q.

Keeping the m ± 1-sidebands, retaining the geodesic curvature and the sound wave

coupling by an appropriate approximation of the propagator integrals, leads to:
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2 + x6) + 2x2 + x4 + x6 and Z(x) the plasma dispersion

function. Although obtained in a completely di⇥erent way, eqn. (1) is very similar

(same coe⇤cients) to the ballooning formulation result. The asymmetry in the ⇤⇥ terms

(omitted in the first derivation based on LIGKA’s set of equation in [14]) was pointed

out by Zonca [20, 21].

The aim of this paper is the following: in the first part, after describing the experimental

parameters, the validity of including only circulating thermal ions with vanishing

perpendicular energy, i.e. � = µB0/E = 0 is investigated. All analytical models except

a very recent work including deeply trapped particles [12], rely on this simplification.

Due to the one-to-one correspondence of the analytical and the numerical coe⇤cients in

a linear eigenvalue code, the correctness of the numerics and the validity of the analytical

approximations can be checked.

Σm

 [Zonca PPCF 1996,2009, Gotit lectures, Garbet 
2006],  [Lauber PPCF 2009]

circulating ion appoximation; extension trapped 
particles [I. Chavdarovski et al, 2014…] 

trapped

Re: analytical

Re: numerical, circulating
Re: numerical, circ+trapped

numerical results are available (LIGKA):

for TAE-range modes often good 
approximation - deviations for low-f regime!

H(x)

radius
ω=0.3ωAorbit-based-kinetic version ready - to be packaged and tested

the e.m. kinetic dispersion relation in Tokamak geometry part
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When combining these two results, adding the adiabtic part and the polarisation term

and summing over electrons and ions the QN eqn with sidebands can be written as
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The velocity phase space integralsin the GKM equation (23) are carried out similarly.
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with

Hm(xm) = H̃m(xm,i) + ⇤H̃m(xm,e)
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1. Introduction

Although beta-induced Alfvén eigenmodes (BAEs) [1, 2] and geodesic acoustic modes

(GAMs) [3] are closely related and are in fact in the long wave-length limit described

by the same dispersion relation [5, 6, 7, 8], their experimental manifestation and

their consequences for tokamak research are quite di⇥erent. Whereas BAEs are

electromagnetic, n ⇥= 0 perturbations, driven by energetic particles, usually located

in the plasma core at roughly 30% to 50% of the toroidal Alfvén eigenmode (TAE)

frequency, the GAMs are n = 0, mostly electrostatic modes closely related to the zonal

flow and turbulence physics especially at the plasma edge.

Their kinetic dispersion relation has been first derived by Zonca [18] in the ballooning

representation. Recently, several alternative derivations (e.g. by Nguyen via Fourier

expansion, high-q limit [7] and by Elfimov via dielectric tensor formulation [9]) were

reported. Furthermore, also elongation e⇥ects for the GAM dispersion relation were

analytically and numerically investigated [10, 11].

The relevant dispersion relation was re-derived [14] for the gyrokinetic model [22]

underlying the eigenvalue code LIGKA [13]. This derivation is also based on a Fourier

expansion in the poloidal angle but keeps the full resonances, i.e. is valid for low q.

Keeping the m ± 1-sidebands, retaining the geodesic curvature and the sound wave

coupling by an appropriate approximation of the propagator integrals, leads to:
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2 + x6) + 2x2 + x4 + x6 and Z(x) the plasma dispersion

function. Although obtained in a completely di⇥erent way, eqn. (1) is very similar

(same coe⇤cients) to the ballooning formulation result. The asymmetry in the ⇤⇥ terms

(omitted in the first derivation based on LIGKA’s set of equation in [14]) was pointed

out by Zonca [20, 21].

The aim of this paper is the following: in the first part, after describing the experimental

parameters, the validity of including only circulating thermal ions with vanishing

perpendicular energy, i.e. � = µB0/E = 0 is investigated. All analytical models except

a very recent work including deeply trapped particles [12], rely on this simplification.

Due to the one-to-one correspondence of the analytical and the numerical coe⇤cients in

a linear eigenvalue code, the correctness of the numerics and the validity of the analytical

approximations can be checked.

combine with QN (Φ-ψ)  ⇒ dispersion relation (no fast ions):

Σm

Here, H is the Heaviside step function, so that H vanishes for trapped particles and equals

unity for circulating particles. ⇧ equals 1 for co-passing and �1 for counter-apassing

particles.

The non-adiabatic density response for circluatling particles of the species a can be written

as:

ña =
��

J0hd
3v

⇥circ

= �⌅

2
eav

3
th

⌥

m

� bmin(r0)

0

d�

b(r, ⇥)
↵
1� �

b(r,�)

� ⇤

0
dY

⇧
Y ·

⌥

k

⌥

⇤

⌦F0

⌦E

(� � �̂⇥)e�i[S0
m��(H⇤S0

m+k)⌅t t̂]

� � �0
D � (H⇧S0

m + k)�t
· J2

0

 
ak,m,⇤⌃m(r

0)� (ak,m,⇤ � aGk,m,⇤)⌥m(r
0)
⌦
(18)

Here,
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b(r, ⇥)
=

B(r, ⇥)

B0
=

1

1 + � cos(⇥)

For obtaining the dispersion relation and for constructing the weak form, one has to inte-

grate over the whole plasma volume. This operation requires a trivial toroidal integration,

a radial integration (which is carried out numerically by introducing a finite element for-

mulation) and a poloidal angle intergration that is carried out analytically, leading to the

following expression for the non-adiabatic density response:
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with

Km,p,k,⇤ =
1

2⌅

� ⇥

�⇥

d⇥
↵
1� �

b(r,�)

e�i[S0
p��(H⇤S0

m+k)⌅t t̂(�)], S0
p = nq(r0)� p (20)

Here, b(r, ⇥) vanishes since J� = 1 + � cos(⇥) and therefore

J�

b(r, ⇥)
= 1

The gyrokinetic moment equation (or parallel current equation) completes the system:
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 ballooning formulation [Zonca PPCF 1996,2009, Garbet 2006],  [Lauber PPCF 2009]
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simplifications:

1.The fast-circulating approximation  is used, trapped particles are not included - may alter the plasma response in 
the low-frequency domain, ω ∼ ωti ∼ ω∗pi ︎ 0.1·ωA0

2.Isotropic Maxwellian distributions are used for all species. A generalisation is being implemented.

3.Finite-orbit-width (FOW) effects are not included in local models 3 and 4.  Model 9 will include them - presently 
in packaging stage.

4.Due to the fast-circulating particle approximation geometric coupling in the kinetic ion and electron response is 
included only up to first order (geodesic). Thus, all modes with poloidal mode number m couple only with 
neighbouring harmonics m ± 1. This means the kinetic coupling terms for EAEs are not consistent, meaning the 
EAE damping with the reduced model is not fully consistent (need to use 2nd order coupling since EAEs consist 
of m,m+2)

5.Electron Landau damping is underestimated (effectively absent) in regions away from rational surfaces because 
only trapped electrons can satisfy k∥v∥ ∼ 1 for finite k∥, but trapped particle motion is not included.

6.The leading-order terms of the compressional magnetic response δB∥ are known to cancel exactly with a 
correction of the magnetic drift.  Apart from this important self-consistent cancellation effects of δB∥ are ignored.  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1.The fast-circulating approximation  is used, trapped particles are not included - may alter the plasma response 
in the low-frequency domain, ω ∼ ωti ∼ ω∗pi ︎ 0.1·ωA0

2.Isotropic Maxwellian distributions are used for all species. A generalisation is being implemented.

3.Finite-orbit-width (FOW) effects are not included in model 3 and model 4.  Model 9 will include them - 
presently in packaging stage.

4.Due to the fast-circulating particle approximation geometric coupling in the kinetic ion and electron response 
is included only up to first order (geodesic). Thus, all modes with poloidal mode number m couple only with 
neighbouring harmonics m ± 1. This means the kinetic coupling terms for EAEs are not consistent, meaning the 
EAE damping with the reduced model is not fully consistent (need to use 2nd order coupling since EAEs 
consist of m,m+2)

5.Electron Landau damping is underestimated (effectively absent) in regions away from rational surfaces because 
only trapped electrons can satisfy k∥v∥ ∼ 1 for finite k∥, but trapped particle motion is not included.

6.The leading-order terms of the compressional magnetic response δB∥ are known to cancel exactly with the 
high-beta correction of the magnetic drift. Apart from this important self-consistent cancellation effects of δB∥ 
are ignored.  

simplifications:

features are available in
fully numerical LIGKA;
not yet packaged;
WF 2.0 to arrive soon

but: will be (much) more 
expensive - for overview and 
transport studies, present 
version is very useful
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application example from [A. Bierwage NF 57 2017] (LIGKA MODEL 3/4):

n=3

JT-60U

without diamagnetic effects
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(LIGKA MODEL 3/4):

JT-60U

n=3

with diamagnetic effects

ω* = T/(ieB) bx∇n/n(1+η) ・∇ ≈ -T/(ieB) (∇rn/n)(1+η) ・m/r

application example from [Bierwage 2017]
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local dispersion relation: ITER 15 MA [details ITPA Seville, 2017]

• use Nyquist contour integrals in complex plane to determine roots of dispersion relation
• physics: good estimate of ion LD damping, simplified electron LD
• use values at gaps to estimate f, gamma of mode belonging to this gap, 
• runtime: seconds to minutes

(LIGKA MODE 3/4):
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shows qualitative beta stabilisation,AITG/KBM unstable for n>~40, see also ORB5 results [T Hayward-Schneider, 2022
but: global effects, trapped electrons etc need to be considered [e.g.G. Falchetto, PoP 2003 ] 

ω* = -T/(ieB) (∇rn/n)(1+η) ・m/r

local dispersion relation: ITER 15 MA [details ITPA Seville, 2017]

(LIGKA MODEL 3/4):

[Chavdarovski 2014]
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5.4. Mode drive and energetic particle modes (EPMs)
So far, the contribution of the EPs was neglected and only the properties of the

(mostly stable) plasma eigenmodes were discussed. Now, a third species is added
straightforwardly to the QN and GKM equation. In the case of EPs however, three im-
portant points have to be considered: firstly, the density of the EPs is usually very small
- typically two orders of magnitude - compared to the background density. Therefore,
EP contributions can be neglected in the QN equation. Secondly, due to their high en-
ergy, EPs contribute substantially to the total pressure. Even in present day experiments
the EP pressure can be comparable to the background pressure. Finally, in contrast to
the Maxwellian background, the EP distribution function is not necessarily isotropic,
leading to a difference between parallel and perpendicular EP pressure.
Numerically, the solution procedures remain the same as described in chapter 4. How-
ever, depending on the mode numbers under consideration, it has to be checked if
expansions in k⇥⌅EP can be made or if the full Bessel functions have to be evaluated.
Also the full drift orbits have to be kept since the strongest drive can be found for modes
that satisfy k�⌅EP ⇥ 1 [150]. This fact becomes obvious, if analyses the pressure terms
due to the EP in eqn. (14) and below: the magnetic curvature drifts play a crucial role
and therefore the energy exchange between mode and particles becomes efficient if the
characteristic energetic ion drift orbit width and the perpendicular wavelength of the
mode k⇥ are comparable. Whereas for present day tokamaks this condition favours
typically modes with n = 2...7 (depending on the heating scheme), it is expected that
for ITER (�-particle drive, higher magnetic field) modes with n = 5...15 will domi-
nate.
Analytically, via asymptotic matching of the inertial (local) layer to the ideal MHD
region a general fishbone-like dispersion relation can be derived [151, 152, 67]:

� i�+ ⇥Wcore + ⇥Whot = 0, (35)

where � is the generalised inertia term given by eqn. 20 and ⇥Wcore and ⇥Whot the
potential energy contribution due to the plasma background and the hot particles, re-
spectively. Above equation is called ’fishbone-like’ since for �2 = ⇤(⇤ � ⇤�

p,i)/⇤
2
A

the dispersion relation for the n = 1,m = 1 fishbone instability is recovered [151].
For Re(⇥) < 0 one obtains modes in the gaps, whereas for Re(⇥) > 0 modes in
the continuum are found that are called energetic particle modes (EPMs). For the latter
modes, the EP drive has to overcome the continuum damping. They are no eigenmodes
of the background plasma but rather ’forced oscillations’ and the mode frequency is set
by the characteristic frequency of the EPs rather than the background plasma. It should
be noted that all terms of eqn. 35 can be of the same order and therefore eqn. 35 is
non-perturbative.
Inserting the TAE-frequency and the corresponding qTAE (eqn. 23) in the resonance
condition, i.e. in the denominator of eqn. 13, leads to a condition for the parallel
velocity of the fast particles

v⇤ =
vA

|2k � 1| = vA, vA/3, ... (36)
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1. Introduction

Although beta-induced Alfvén eigenmodes (BAEs) [1, 2] and geodesic acoustic modes

(GAMs) [3] are closely related and are in fact in the long wave-length limit described

by the same dispersion relation [5, 6, 7, 8], their experimental manifestation and

their consequences for tokamak research are quite di⇥erent. Whereas BAEs are

electromagnetic, n ⇥= 0 perturbations, driven by energetic particles, usually located

in the plasma core at roughly 30% to 50% of the toroidal Alfvén eigenmode (TAE)

frequency, the GAMs are n = 0, mostly electrostatic modes closely related to the zonal

flow and turbulence physics especially at the plasma edge.

Their kinetic dispersion relation has been first derived by Zonca [18] in the ballooning

representation. Recently, several alternative derivations (e.g. by Nguyen via Fourier

expansion, high-q limit [7] and by Elfimov via dielectric tensor formulation [9]) were

reported. Furthermore, also elongation e⇥ects for the GAM dispersion relation were

analytically and numerically investigated [10, 11].

The relevant dispersion relation was re-derived [14] for the gyrokinetic model [22]

underlying the eigenvalue code LIGKA [13]. This derivation is also based on a Fourier

expansion in the poloidal angle but keeps the full resonances, i.e. is valid for low q.

Keeping the m ± 1-sidebands, retaining the geodesic curvature and the sound wave

coupling by an appropriate approximation of the propagator integrals, leads to:
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2 + x6) + 2x2 + x4 + x6 and Z(x) the plasma dispersion

function. Although obtained in a completely di⇥erent way, eqn. (1) is very similar

(same coe⇤cients) to the ballooning formulation result. The asymmetry in the ⇤⇥ terms

(omitted in the first derivation based on LIGKA’s set of equation in [14]) was pointed

out by Zonca [20, 21].

The aim of this paper is the following: in the first part, after describing the experimental

parameters, the validity of including only circulating thermal ions with vanishing

perpendicular energy, i.e. � = µB0/E = 0 is investigated. All analytical models except

a very recent work including deeply trapped particles [12], rely on this simplification.

Due to the one-to-one correspondence of the analytical and the numerical coe⇤cients in

a linear eigenvalue code, the correctness of the numerics and the validity of the analytical

approximations can be checked.

Σm
Λ2

following form [34]:

⇥Whot ⇤
⇥

dEdµdP�d⇤d�
⇤�
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⌦E

(⌥ � ⌥̄⇥)|Lk|2

⌥ � ⌥prec � (nq � k)⌥t,b
(4)

with ⌥̄⇥ = ⇤F
⇤P�

/⇤F
⇤E .This expression constitutes a phase space integral over all possible

fast particle trajectories and all possible resonances of a mode of frequency ⌥ with
the transit or bounce frequency ⌥t,b (and its harmonics, counted by the index k) and
with the precession drift frequency ⌥prec. The real space integration variables are the
poloidal angle ⇤, the toroidal angle � and the generalised toroidal momentum P� =
Ze⌃ + ZeR/�civ⌅B�. This expression for P� can be derived from the conservation
of angular momentum in a axisymmetric system, and due to its simple dependence
on the poloidal flux ⌃ it can be used here as a radial variable. The velocity phase
space is represented by the variables energy E and the adiabatically invariant magnetic
momentum µ. Lk are the Fourier coefficients of the linearised perturbed Lagrangian

L̃ = ZeÃ · Ṙ� Ze⇧̃� µB̃

for the unperturbed particle motion in the potential of the wave characterised by Ã or
B̃ (electromagnetic) and ⇧̃ (electrostatic). At this point it becomes clear what ‘hybrid’
actually means: the wave perturbations are precalculated within the MHD model and
then used for integrating the kinetic particle equations that describe the interaction with
the wave. Therefore, the complex or ’resonant’ part of ⇥Whot describes the irreversible
energy transfer from particles to waves or vice versa depending on the gradients of the
EPs’ distribution function ⇤Ff

⇤E and ⇤Ff

⇤P⇥
. Mathematically, the complex contributions

arise due to the velocity phase space integration over the resonances (Landau pole
integration). The real or ‘non-resonant’ part leads to a small frequency shift and is
usually neglected for perturbative problems such as Alfvén eigenmodes. However, in
other cases such as EPMs and sawtooth stabilisation it plays an important role.
The presence of ⇥Whot destroys the self-adjoint structure of the ideal MHD operator.
As a consequence, the system has complex eigenvalues, i.e. purely oscillating waves
become damped or unstable. If it can be assumed that ⇥Whot is small compared to
⇥WMHD, equation (3) can be iterated: the zeroth order eigenfrequency and the mode
structure are obtained from the solution of the ideal MHD equations, and the first order
correction for the eigenvalue is determined via:

(⌥r + i�)2Wkin = ⇥WMHD + ⇥Whot ⌅ �

⌥r
=

Im(⇥Whot)
2⌥2

rWkin

This expression gives an upper limit of the instabilities’ growth rate since it does not
include background damping and the EPs’ influence on the eigenfunction.
At present, there are a number of numerical codes that are essentially are based on this
hybrid approach: CASTOR-K [35] and NOVA-K [36], and CAS3D-K [37] in a more
general non-axisymmetric geometry.
The basic idea of this hybrid approach, i.e. to solve the kinetic equation for a given
perturbation and close the equations by adding an EP pressure tensor, can also be used
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connection to the generalised fishbone dispersion 
relation [Chen, Zonca,1984… ]

IFTS Intensive Course on Advanced Plasma Physics-Spring 2010 Lecture 4 – 10

Derivation of the fishbone dispersion relation

✷ This derivation is a summary of that given by Chen et al 84, where
it is shown that, for a radial displacement ξ = e−iω0t+iζ−iθξ0 =
−(c/ω0B0)e−iω0t+iζ−iθ(δφ0(r)/r)

i|s|
ω0

ωA
= δŴ = δŴf + δŴk ωA = vA/(q(rs)R0) = vA/R0

✷ Generalization of this dispersion relation is discussed in Lecture 4 of Spring
2009 Lecture Notes

i|s|Λξ = δŴ ξ =
(

δŴf + δŴk

)

ξ

✷ Simplest expression of δŴf is given by Bussac et al 75

δŴf = 3π∆q0

(

13/144 − β2
ps

) (

r2
s/R

2
0

)

with βps = −(R0/r2
s)

2
∫ rs

0 r2(dβ/dr)dr, ∆q0 = 1−q(r = 0) and β = 8πP/B2
0

F. Zonca

core
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Re[Λ2] <0 :                    gap modes            
Re[Λ2] >0 : EP modes in continuum

the fishbone dispersion relation 
[Chen, 1984]

the combined effect of  δWcore and Re[δWhot] is to ‘move’ the mode 
away from the local continuum solution and determines if the mode can 
exist -> ‘Alfven zoo’

for EPMs, the mode frequency is set by the EPs 
the drive has to overcome continuum damping i.e. 
Im(δWhot)> Re(Λ)

theory for linear onset well developed [Zonca PoP, 2005, R.-R. Ma, 2019-2023]

5.4. Mode drive and energetic particle modes (EPMs)
So far, the contribution of the EPs was neglected and only the properties of the

(mostly stable) plasma eigenmodes were discussed. Now, a third species is added
straightforwardly to the QN and GKM equation. In the case of EPs however, three im-
portant points have to be considered: firstly, the density of the EPs is usually very small
- typically two orders of magnitude - compared to the background density. Therefore,
EP contributions can be neglected in the QN equation. Secondly, due to their high en-
ergy, EPs contribute substantially to the total pressure. Even in present day experiments
the EP pressure can be comparable to the background pressure. Finally, in contrast to
the Maxwellian background, the EP distribution function is not necessarily isotropic,
leading to a difference between parallel and perpendicular EP pressure.
Numerically, the solution procedures remain the same as described in chapter 4. How-
ever, depending on the mode numbers under consideration, it has to be checked if
expansions in k⇥⌅EP can be made or if the full Bessel functions have to be evaluated.
Also the full drift orbits have to be kept since the strongest drive can be found for modes
that satisfy k�⌅EP ⇥ 1 [150]. This fact becomes obvious, if analyses the pressure terms
due to the EP in eqn. (14) and below: the magnetic curvature drifts play a crucial role
and therefore the energy exchange between mode and particles becomes efficient if the
characteristic energetic ion drift orbit width and the perpendicular wavelength of the
mode k⇥ are comparable. Whereas for present day tokamaks this condition favours
typically modes with n = 2...7 (depending on the heating scheme), it is expected that
for ITER (�-particle drive, higher magnetic field) modes with n = 5...15 will domi-
nate.
Analytically, via asymptotic matching of the inertial (local) layer to the ideal MHD
region a general fishbone-like dispersion relation can be derived [151, 152, 67]:

� i�+ ⇥Wcore + ⇥Whot = 0, (35)

where � is the generalised inertia term given by eqn. 20 and ⇥Wcore and ⇥Whot the
potential energy contribution due to the plasma background and the hot particles, re-
spectively. Above equation is called ’fishbone-like’ since for �2 = ⇤(⇤ � ⇤�

p,i)/⇤
2
A

the dispersion relation for the n = 1,m = 1 fishbone instability is recovered [151].
For Re(⇥) < 0 one obtains modes in the gaps, whereas for Re(⇥) > 0 modes in
the continuum are found that are called energetic particle modes (EPMs). For the latter
modes, the EP drive has to overcome the continuum damping. They are no eigenmodes
of the background plasma but rather ’forced oscillations’ and the mode frequency is set
by the characteristic frequency of the EPs rather than the background plasma. It should
be noted that all terms of eqn. 35 can be of the same order and therefore eqn. 35 is
non-perturbative.
Inserting the TAE-frequency and the corresponding qTAE (eqn. 23) in the resonance
condition, i.e. in the denominator of eqn. 13, leads to a condition for the parallel
velocity of the fast particles

v⇤ =
vA

|2k � 1| = vA, vA/3, ... (36)

33
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6 Dispersion relation

Now we solve the QN for ��  and substitute into GKM:
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 Finite orbit width dispersion relation for LIGKA

• equivalent to EGAM FOW equations: Qiu [2009], Miki & Idomura [2015]
• fast analytical model for FOW effects: solve equations both locally (scan kr) and globally
• LIGKA model 9 (specification of kr needed)
• rationale: implement global effects in local model - can be improved by estimating 

analytically AE mode structures (ongoing…)

Shear Alfvén and ion sound waves in high-� tokamaks: I. Continuous spectra 25

(c) An observation that I have not yet mentioned in the text is the following: I

believe to see multiple minima !hS,min at slightly di↵erent frequencies when

there are multiple (higher-order) branches of HSW. The frequencies of the

minima seem to be lower for HSW branches of higher order.

Appendix B. Analytic dispersion relation investigated in section 4.4

Combining the QN and GKM equation, keeping the m ± 1-sidebands, retaining the

geodesic curvature and the sound wave coupling leads to [? ]:
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with xm = !
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6 and Z(x) the plasma dispersion func-

tion. Although obtained in a completely di↵erent way, eqn. (B.1) is very similar (same

coe�cients) to the ballooning formulation result[? ]. The asymmetry in the !⇤ terms

was pointed out by Zonca [? ].

no FOW, 
circulating particle  

approximation

[Zonca 1996,2009 Lauber 2009] [Zonca 1998, Z.X. Lu 2017,Lauber JPC 2018] 
2nd order  FOW



EP-Stability WF training course, July 2023

ASDEX UpgradeEigenmoden einer Stradivari

Stradivari frequency response [Jansons,2004]

[Stradivari Society]

Universität Greifswald, Juli 2009 7

global solver - antenna response model
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ASDEX UpgradeEigenmoden eines Tokamaks
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frequency response: ASDEX Upgrade, berechnet mit LIGKA

Scher-Alfven

      Moden

  

Schallwellen

 Drift-Moden

Zwischen-

bereich !

Universität Greifswald, Juli 2009 8

global solver - antenna model

frequency response of  ASDEX Upgrade (using linear GK model)

shear Alfven
waves

intermediate
regime (BAE)

drift and 
sound waves

Lauber ~ 2008
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numerics

•Fourier in n and m, couple m
•finite cubic Hermite polynomials
•antenna solver
•inverse vector iteration 
(available for up to 7 pol harms.)

•using the same infrastructure for 
all models;

•wrapper for IMAS selects, and 
fills relevant settings 
automatically
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Kinetic effects (II)

Scan throughout the gap region

in order to find all the modes in and around a gap: drive perturbation at plama boundary, sweep frequency
and measure plasma response
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IPP Colloquium, Garching, January 2009 19

Scan through the gap region

in order to find all the modes in and around the gap: drive perturbation at 
boundary, or at mode location, sweep frequency and measure plasma response
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⇥ =
4ms⇤i
rm�̂3/2

�
3

4
+

Te

Ti
; with �̂3/2 = 5rm/2R (34)

that describes parallel electric field effects due to finite Larmor radii, the radiative
damping [121, 128] within the gap can become significant. This kind of damping is
also called ’tunnelling’: although there is no direct intersection with the shear Alfvén
continuum, the kinetic Alfvén wave structure is present in the TAE mode. Fig.9 shows
this tunnelling and the dependence of the damping on the background ion Larmor ra-
dius [112].
Another type of TAE, called ’kinetic TAE’ (KTAE) [121] is found on top of the gap:
KTAEs are generated by two KAWs that propagate towards each other and form a
standing wave between the two continuum intersections at a given frequency. For
increasing frequency the two intersections layers are moving away from each other,
allowing for more and more maxima in between the continuum intersection points (see
fig. 10). The first 4 KTAEs with ‘quantum numbers’ p = 0, 1, 2, 3 are shown in this
figure. Recently, it was shown analytically that not surprisingly the radiative damping
is very small for the odd TAE, i.e. the p = 0 KTAE [129].

Figure 10: The first four kinetic TAEs (KTAEs) at the upper boundary of the TAE gap [112].

5.2. Reversed shear Alfvén eigenmodes
Non-monotonic q-profiles can give rise to a further type of AE: a local minimum

in the safety factor causes a local maximum in the SAW continuum (see fig. 11). On
top of this maximum, no continuum damping is present and therefore a global AE,
called Alfvén Cascade mode or reversed shear Alfvén eigenmode (RSAE) with one

30

Kinetic TAEs

two KAWs propagating in opposite directions form a 
standing wave: KTAE 
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global solver (example antenna solver, LIGKA mode 1)

LIGKA mode1 scans entire 
gap

LIGKA mode 2 can be used 
to ‘follow’ just one mode as 
given by mode 1

n=24 n=15

damping: ~15%
damping: ~7%
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damping  > ~1%

for n<15 more than one 
TAE branch is found to 
be weakly damped

different alignment of 
TAE gaps from core-edge

may destabilise 
subdominant modes with 
lower n in outer core
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blue: local continuum (*) 
and global LIGKA 
solution (○) without  α- 
particles 

red: local continuum 
including  finite orbit 
width effects (*) and 
global LIGKA+HAGIS 
solution (☐)with  α 
particles 

sophisticated local model (~100 times cheaper than global model) predicts instability threshold and linear 
damping/growth rates reasonably well: deviations low toroidal mode numbers - switch to global solver 

caveat:  for global modes with continuum interaction, local solver underestimates damping considerably!

comparison of local and global results: ITER ITPA case
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‘Reversed shear’ Alfvén Eigenmodes (RSAE)
Reversed-Shear-Scenarios

Alfvén Cascade-Modes
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diagnostic for minimum of q-profile: mode frequency traces minimum in q, sweeping mostly upwards in
frequency, driven by energetic ions;
existence depends also on pressure, pressure gradient, density, density gradient;
[Berk, Breizman, Sharapov, Fu, Konovalov 2001-2006]

IPP Colloquium, Garching, January 2009 37
[Berk, Breizman, Fu, Sharapov, Konovalov, Lauber 2000-2006]
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off axis peaked current profile: 
“advanced tokamaks” - steady state

⇒ q-profile has minimum

⇒ region without continuum damping
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RSAE-TAE conversion
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further gaps due to geodesic curvature and coupling 
between Alfvén and acoustic waves (see below) 

 Σm( ω/vA)2- k2||m = β *  F( ω 2/c2s- k2||m)
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    β=   kinetic pressure 
magnetic pressure

gaps scale with plasma beta:

⇒ beta induced Alfvén 
eigenmode : BAE

⇒ beta induced Alfvén- Acoustic 

eigenmode : BAAE
strongly modified in kinetic 

description! (ω~ωt,b)

[Heidbrink 1992, Zonca 1996,Gorelenkov 2006, Lauber 2013, Heidbrink 2020, Ma 2021-23]

[DIIID case, 
Lauber, 2012] MHD BAAE cannot be excited - strongly damped;

drift-Alfvén-type instabilities at rational surfaces - can 

be excited by thermal gradients
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go global: use local information for setting up global simulation

mode5
analytical estimates



time_slice(itime)

time
equilibrium (transport code)
core_prof (tansport code)
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H CHEASE/HELENA: 
radial grid resolution in HELENA
defines radial grid resolution in LIGKA!

Ha1 HAGIS1 - equilibrium

L5 LIGKA mode 5

LIGKA mode 4

LIGKA mode 1/2

HAGIS2: add sat. amplitudes, FEP

HAGIS1 - transform AEs 

timemhd_linear
distributions

input

output

EP WORKFLOW
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equations are solved in different limits and approximations, sharing same infrastructure:

• local, analytical estimates 
• local reduced MHD  - shear Alfvén spectra
• local kinetic (w/o numerical coefficients, i.e. orbits given by GC code)  [Zonca 1996, Lauber 2009]
• local kinetic with FLR/FOW (w/o numerical coefficients) [Zonca 1998,Lauber JPC 2018]

• global reduced MHD  - global eigenfunction 
• global kinetic (w/o numerical coefficients): 2 solvers
• global kinetic track mode (w/o numerical coefficients)

LIGKA: linear GK model, multi-species, general 2D geometry

• typically modes are called in sequence - to large part automated 
(workflow, IMAS format)

• for technical details and introduction into various options, please 
refer to talk by V.-A. Popa

• toolbox ready for the use in various transport models: Eurofusion 
‘ATEP’ Enabling research project [Lauber, Falessi et al 2021]


