

S. Pinches, M. Schneider, O. Hoenen

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission, Neither the European Union nor the European Commission can be held responsible for them.

*Integrated Modeling and Analysis Suite@ITER.org

0 0 0 0 0 0

0 0 0

0 0 4 0 0

0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0

Numerical tools: Overview

• IMAS:

- Integrated Modelling & Analysis Suite
- LIGKA[1]:
 - Linear gyrokinetic eigenvalue code
- HELENA/CHEASE[2]:
 - MHD equilibrium solver
- EP-Stability-WF:
 - Energetic Particle Stability Workflow (Python)

- Models form hierarchy of fidelity, complexity:
 - Use local solvers to have an overview of the scenario before attempting global, more expensive runs.
 - Use global solver to validate the results obtained by the local, faster runs.

Numerical tools: LIGKA

• LIGKA:

- Solves the linearized gyrokinetic equations -> eigenvalues and eigenfunctions (frequency, damping, mode structure).
- Models used in this work are (among others):
- >1 s/mode
 Model 5: local analytical estimates of various basic AEs properties: frequency, estimated mode structure, rational surface, next and previous gap informations.
- 10 s/mode
 Model 4: based on model 5 results, the local analytical dispersion relation for each mode is calculated. Determines the starting point for global calculations.
- 30 min/mode
 Model 1: performs a frequency scan throughout the gap to find global linear properties of the modes.

Numerical tools: Energetic Particles Stability Workflow

- The aim of the WF is to perform an automated linear stability analysis on different time slices of a projected scenario or reconstructed experimental equilibrium.
- First time dependent workflow which makes use of the IMAS infrastructure and various codes.

• Scope:

- Connect the numerical tools with the data infrastructure (IMAS).
- Facilitates retrieving/saving data from the DB through XML files.
- Fast configuration of numerical tools.
- Complete data analysis suite integrated in the interface. (to be completed)

Flow of FC2K actors in the WF


```
if actor == "Ligka m2":
def actor_settings(actor):
                                                                                     actor_params["entrypoint_actor"] = False
    actor_params = {}
                                                                                     actor_params["wrapper"] = ligka_actor_wf_wrapper
                                                                                                                                                          1)
                                                                                    actor_params["config_file_name"] = "z_ligka.xml"
   output_ids = {}
                                                                                     input_ids = {"equilibrium": 0, "core_profiles": 0, "mhd_linear": 2}
   if actor == "Chease":
                                                                                     output_ids = {"mhd_linear": 6}
        actor params["entrypoint actor"] = True
                                                                                 if actor == "Ligka_m3":
       actor_params["wrapper"] = chease_actor_wf_wrapper
                                                                                     actor_params["entrypoint_actor"] = False
        actor_params["config_file_name"] = "chease_input_choices.xml"
                                                                                    actor_params["wrapper"] = ligka_actor_wf_wrapper
                                                                                                                                                          2)
       input ids = {"equilibrium": 0, "core profiles": 0}
                                                                                    actor_params["config_file_name"] = "z_ligka.xml"
        output_ids = {"equilibrium": 2, "core_profiles": 0}
                                                                                     input_ids = {"equilibrium": 0, "core_profiles": 0, "mhd_linear": 0}
    if actor == "Helena":
                                                                                                                                                           3)
                                                                                     output_ids = {"mhd_linear": 7}
       actor_params["entrypoint_actor"] = True
                                                                                 if actor == "Hagis_1":
       actor_params["wrapper"] = helena_actor_wf_wrapper
                                                                                     actor_params["entrypoint_actor"] = False
       actor_params["config_file_name"] = "helena.xml"
                                                                                     actor_params["wrapper"] = hagis1_actor_wf_wrapper
                                                                                                                                                          4)
       input_ids = {"equilibrium": 0, "core_profiles": 0}
                                                                                    actor_params["config_file_name"] = "hagis1.xml"
       output_ids = {"equilibrium": 0, "core_profiles": 0}
                                                                                     input_ids = {"equilibrium": 0, "mhd_linear": 0}
   if actor == "Ligka_m5":
                                                                                     output_ids = {"equilibrium": 1, "mhd_linear": 3}
       actor_params["entrypoint_actor"] = False
                                                                                 if actor == "Hagis_2":
       actor_params["wrapper"] = ligka_actor_wf_wrapper
                                                                                     actor_params["entrypoint_actor"] = False
       actor_params["config_file_name"] = "z_ligka.xml"
                                                                                     actor params["wrapper"] = hagis2 actor wf wrapper
       input_ids = {"equilibrium": 0, "core_profiles": 0}
                                                                                     actor_params["config_file_name"] = "hagis2.xml"
        output_ids = {"mhd_linear": 0}
                                                                                     input_ids = {"equilibrium": 1, "mhd_linear": 3, "core_profiles": 0}
   if actor == "Ligka m4":
                                                                                    output_ids = {"distributions": 0, "mhd_linear": 4}
       actor_params["entrypoint_actor"] = False
                                                                                 if actor == "Finder":
       actor params["wrapper"] = ligka_actor_wf_wrapper
                                                                                     actor_params["entrypoint_actor"] = False
       actor_params["config_file_name"] = "z_ligka.xml"
                                                                                     actor_params["wrapper"] = finder_actor_wf_wrapper
       input_ids = {"equilibrium": 0, "core_profiles": 0, "mhd_linear": 0}
                                                                                     actor_params["config_file_name"] = "finder_input.xml"
        output ids = {"mhd linear": 1}
                                                                                     input_ids = {"equilibrium": 1}
   if actor == "Ligka_m1":
                                                                                     output_ids = {"distributions": 1}
       actor_params["entrypoint_actor"] = False
                                                                                 if actor == "Falcon":
       actor_params["wrapper"] = ligka_actor_wf_wrapper
                                                                                     actor_params["entrypoint_actor"] = False
       actor_params["config_file_name"] = "z_ligka.xml"
                                                                                     actor_params["wrapper"] = falcon_actor_wf_wrapper
       input_ids = {"equilibrium": 0, "core_profiles": 0, "mhd_linear": 1}
                                                                                     actor_params["config_file_name"] = "falcon_input.xml"
       output_ids = {"mhd_linear": 2}
                                                                                     input_ids = {"equilibrium": 2}
    if actor == "Ligka_m6":
                                                                                    output_ids = {"mhd_linear": 5}
        actor_params["entrypoint_actor"] = False
       actor params["wrapper"] = ligka actor wf wrapper
                                                                                 actor_params["input_ids"] = input_ids
       actor_params["config_file_name"] = "z_ligka.xml"
                                                                                 actor_params["output_ids"] = output_ids
        input ids = {"equilibrium": 0, "core profiles": 0, "mhd linear": 0}
                                                                                 return actor params
        output ids = {"mhd linear": 5}
```

Fc2k actors:

- Have callable functions (wrappers to the fortran, or python code (Falcon)
- Input only IDSs
- Output only IDSs
- Easier to manage input/output and decide order of execution

X - EP WORKFLOW				• • ×	X -¤ SPECIES	SETTINGS	• • ×	X-A SCENARIO PARA	METERS	
WORKFLOW PA	RAMETERS	ACTOR SELECTION			Bulk lons			SCENARIO PARAMETERS (m		
user	public	Equilibrium_code_chease	0	•	Н 0.02			n_e	1	
machine	ITER	Equilibrium_code	Helena	_	D 0.02			n_H	1	
shot_nr	130012	Distributions_1	0	•	T 0.02			n_D	1	
run_in	2	Distributions_2	0	•				n_T	1	
machine_out	test_DB	Orbit_Finder	0	-	Impur	ities		n_Be	1	
run_out	10	Stability_code	Ligka_m5		Be 0.02			n_C	1	
itime	15-17,19	CHEASE Parameters			Ne 0.02			n_Ne	1	
FURTHER SE	ETTINGS	HELENA Parameters]		He4 0.02			n_He4_ash n He4 EP	1	
liaka 541	E.	LIGKA Parameters	1		Tu 0.02			T_e	1	
ligka 5412		LIGKA Faranteters			Ar 0.02			т_н	1	
pulse list		HAGIS 1 Parameters	1		2.45 (T_D	1	
fast particles	Г		1		Fast	ons		T_T	1	
hdf5	Г	HAGIS 2 Parameters			H 0.001			T_Be	1	
mpi_processes	8	FINDER Parameters	1		D 0.001			T_C	1	
Cause Configuration	Cave and Run	FINDER Parameters]		He4 0.001			T_Ne	1	
Save Configuration	Save and Run	Species Settings						T_He4_ash	1	
Save Configuration as	Load Configuration		1					T_He4_EP	1	
		SCENARIO Parameters			Sa	ve Species Configuration		Save SCENARIO	Configuration	
Restore Default		IDS Merge	1	1	X-A LIGKA P	ARAMETERS	• • ×	[2]		
S	cenario Summary Choice		1				\square			
) → IDS Merge			• • ×		LIGKA	PARAMETERS				
Inpu	its	S	ettings		modus	5				
user in 1	public	itime 15-17.	19		min_n_tor	10	_			
machine in 1	ITER	Equilibrium copy	~		min_m	10				
shot in 1	130012	ne			max m	11	-			
run in 1	2	Те			sidebands	5	_			
HDF5 1		ni H			sidebands asv	2	_			
user in 2	public	тін			mode type	1				
machine_in_2	ITER	ni_T	~		even	0	_			
shot_in_2	130012	Ti_T			COCD	1	-			
run_in_2	2	ni_D			start pos	1	-			
HDF5_2		Ti_D			force m	false	-			
Outr	.	ni_Be			npsi out	256	_			
Outp	Jul	Ti_Be			kr read	0.0d0				
machine_out	TEST_IDS_MERGE	ni_C			q0	0.0d0				
shot_out	130012	Ti_C			rad_start	0.0d0				
run_out	89	ni_Ne			rad_end	1.0d0				
HDF5_out	F	Ti_Ne			offset_d	0.0d0				
Save IDS_MERGE Configuration					Sa	we LIGKA Configuration				

Extra features

X-¤	SPECIES SETTING	GS	• 🗆 🗙	X-A SCENARIO	PARAMET	ERS	• 🗆 🗙			
Bulk Ions			SCENARIO PARAMETERS (multipliers							
н	0.02			n_e	1					
D	0.02			n H	1					
т	0.02	_		n D	1					
	0.02			n T	1		-			
Impurities				n Be	1		-			
Be 0.02				n_bc	1		-			
No. 0.02		n_C	1		-					
			n_Ne	1		_				
He4 0.02		n_He4_ash	1		_					
С	C 0.02			n_He4_EP	He4_EP 1					
Tu	a 0.02			T_e	e 1					
Ar	Ar 0.02			т_н	1					
East long		T_D	1							
	1 451 10115			T_T	1					
н	0.001			T_Be	1					
D	0.001			тс	1		-			
He4	He4 0.001			T Ne	1		-			
	1.000.000			T He4 ash	1		-			
				T_He4_asii	1					
				I_He4_EP	1		/			
	Save Species C	Configuration		Save SCENARIO Configuration						
-m (Scenario Selector									• • ×
ulse	Run	Database		Reference		lp[MA]	B0[T]	Fuelling	Confinement	Workflow
1000	002 1	ITER	â.	ITER-half-field-H	1.5	-7.5	-2.65	н	L-mode	METIS
1000	001 2	ITER		ITER-full-field-H		-15.0	-5.3	н	L-mode	METIS
1000	03 1 ITER IT		ITER-third-field-H		-5.0	-1.8	н	L-H-L	METIS	
1000	7 1 ITER ITER-intermedia		ER-intermediate-3T-H		-8.5	-3.0	н	L-H-L	METIS	
1000	100008 1 ITER IT		ITE	R-intermediate-3.3T-H		-9.5	-3.3	н	L-H-L	METIS
100009 1 ITER I		ER-intermediate-4.5T-H		-12.5	-4.5	н	L-mode	METIS		
100013 1 ITER			ITER-PFPO1-1.8T-H		-5.0	-1.8	н	L-H-L	METIS	
100015 1 ITER ITER-PFP02-:		ITER-PFPO2-1.	8T-H-0.9*n_GW-NBI_745keV_22.31		-5.0	-1.8	н	L-H-L	METIS	
100014 2 ITER ITER-PFPO2-		ITER-PFPO2-1.	.8T-H-0.5*n_GW-NBI_530keV_9.4M		-5.0	-1.8	н	L-H-L	METIS	
100016 1 ITER IT		R-10MA-5.3T-Hydrogen	-10.0	-5.3	н	L-mode	METIS			

Development/testing cycle, current and previous versions

ASDEX Upgrade

- Maintenance cycle of actors + WF:
 - Actors are self contained codes that can act independently or as part of a workflow.
 - They are continuously tested and maintained via versions (different modules in sdcc/gw)
 - On top of that we have the EP-Stability-WF integrated testing.
 - When testing the wf, we also test the integration of LIGKA + HELENA/CHEASE inside the WF (2x testing for actors)
 - Testing happens automatically at every push of every piece of code (via automated bamboo tests)

- Following runs were performed with:
 - HELENA: 2.0.1-intel-2020b-DD-3.35.0
 - LIGKA: 1.0.1-intel-2020b-DD-3.35.0
 - CHEASE: 1.0.9-intel-2020b-DD-3.35.0
 - EP-WF: 1.0.2-intel-2020b-DD-3.35.0
- Current status of codes:
 - HELENA: 2.0.1-intel-2020b-DD-3.37.0
 - LIGKA: 1.0.5-intel-2020b-DD-3.37.0
 - CHEASE: 13.1.2-intel-2020b-DD-3.37.0
 - EP-WF: 1.0.4-intel-2020b-DD-3.37.0

Things are moving fast!!

Scenario 1: ASTRA - 131025/34 ITER DB - model 5

Model 6 + comparison between model 5-4-1

Model 6 + 3 + model 1 global EFs.

Scenario: METIS time-dependant Q=10 ITER baseline

- D-T plasma, Q = 10, 15 MA
- Peak axis T_{e,0} ≅27 keV, 4 keV pedestal top

ASDEX Upgrade

Results: Scan over the entire Radial/Temporal domain

35

30

25

Toroidal Mode P

- 5

Numb

- 12014 total number of modes, 137/time-point
- With red n = 10, m = 11 mode
- Slightly inverted q-profile around s = 0.5 leads to two different TAE branches with the same mode numbers.
- After 90s no more TAEs are found in the core, due to small magnetic shear in the core assumed by the METIS-given equilibrium.

Results: TAE n = 10, m = (11,12) global mode structure

ASDEX Upgrade

Results: Convergence test (n = 10)

Results: Convergence test - mode structure/extra points

ASDEX Upgrade

Results: EP influence on TAE, n = 10 mode

