EP-Stability-Workflow a practical hands-on guide

Ph. Lauber, V.-A. Popa, T. Hayward-Schneider, July 2023

console commands (bold) klicks in gui (bold italic)

on SDCC, login01-03:

module avail EP-S

EP-Stability-WF/1.0.0-intel-2020b-DD-3.35.0 EP-Stability-WF/1.0.4-intel-2020b-DD-3.37.0 EP-Stability-WF/1.0.3-intel-2020b-DD-3.37.0 EP-Stability-WF/1.0.4-intel-2020b-DD-3.39.0

module show EP-Stability-WF/1.0.4-intel-2020b-DD-3.37.0

for older/newer versions, try: (not officially supported) module use /home/ITER/haywart/.local/easybuild/modules/all

module load EP-Stability-WF/1.0.4-intel-2020b-DD-3.37.0

mkdir training

cd training

most non-IMAS output files will be written in this directory IMAS files in ~/public/imasdb/training/3/0/ (mds+ or hfd5)

ep_gui

(see below: ep_nogui, editing directly .xml files)

choose shot from public or private IMAS DB

Save configuration as (give useful name)

otherwise a standard name based on time stamp is used

then:

Save & Run

on gateway:

(module load cineca) module use ~g2thayw/public/easybuild/modules/all module avail EP-S

-----/g/g2thayw/public/easybuild/modules/all

EP-Stability-WF/1.0.0-DD-3.35.0 EP-Stability-WF/1.0.2-DD-3.35.0 EP-Stability-WF/1.0.4-DD-3.35.0 EP-Stability-WF/1.0.1-DD-3.35.0 EP-Stability-WF/1.0.3-DD-3.35.0

module load EP-Stability-WF/1.0.4-DD-3.35.0

mkdir training

cd training

most non-IMAS output files will be written in this directory IMAS files in ~/public/imasdb/training/3/0/ (mds+)

ep_gui

(see below: ep_nogui, editing directly .xml files)

choose shot from public or private IMAS DB

Save configuration as (give useful name)

otherwise a standard name based on time stamp is used

then:

Save & Run

ED WODKELOW

A LP WORKIEOW			
WORKFLOW	PARAMETERS	ACTOR S	SELECTION
user	public	Equilibrium_code_chease	Chease
machine	ITER_SCENARIOS	Equilibrium_code	Helena
shot nr	131025	Distributions_1	0
run in	34	Distributions_2	0
machine out	training	Orbit_Finder	0
run out	1	Stability_code	Ligka_m5
itime	0	CHEASE Parameters	
FURTHER	R SETTINGS	HELENA Parameters	
ligka_541		LIGKA Parameters	
ligka_5412		LIACIC 1 Developmentaria	
pulse_list		HAGIS I Parameters	
fast_particles		HAGIS 2 Parameters	
hdf5			i: E
mpi_processes	1	FINDER Parameters	
Save Configuration	Save and Run	Species Settings	
Save Configuration as	Load Configuration	SCENARIO Parameters	
Restore Default		IDS Merge	
	Scenario Summary Choice		
Exit			

	×
	•
	•
	-
	-
	-
	-

On SDCC, login01-03:	number of ra
	number of po
module avail EP-S	number of ra
EP-Stability-WF/1.0.0-intel-2020b-DD-3.35.0	number of po
	number of ar
module show EP-Stability-WF/1.0.3-intel-	typically sam
for older/newer versions. trv: (not officially su	
module use /home/ITER/haywart/.local/easy	best for LIGK
	private HELE
module load EP-Stability-WF/1.0.3-Intel-2	number of ra
mkdir training	to be used in

cd training

most non-IMAS output files will be written in this directory IMAS files in ~/public/imasdb/training/3/0/ (mds+)

ep_gui

choose shot from public or private IMAS DB

Save configuration as (give useful name)

otherwise a standard name based on time stamp is used

then:

Save & Run HELENA:

https://git.iter.org/projects/EQ/repos/helena/browse

adial points used internally oloidal points used internally Idial points used for mapping final result (<500) oloidal points used for mapping final result (<500) ngular points used for mapping final result (<500), ne as np

(A 128/256/384/ (512 and more points available in ENA version) - LIGKA uses HELENA-given resolution! idial points to be divisible by number of parallel procs LIGKA later

	EU3		
HELENA PARAM	ETERS		
nr 101			
np 129			
npinap 129			
nchi 128			
X EP WORKFLOW			
WORKFLOW	/ PARAMETERS	ACTOR S	SELECTI
user	public	Equilibrium_code_chease	0
machine	ITER	Equilibrium_code	Helena
shot_nr	131025	Distributions_1	0
run_in	34	Distributions_2	0
machine out	training	Orbit_Finder	0
run out	1	Stability_code	0
itime	0	CHEASE Parameters	
FURTHE	R SETTINGS	HELENA Parameters	
ligka_541		LIGKA Parameters	Γ
ligka_5412 pulse_list		HAGIS 1 Parameters	
fast_particles		HAGIS 2 Parameters	
mpi_processes	1	FINDER Parameters	
Save Configuration	Save and Run	Species Settings	
Save Configuration as	Load Configuration	SCENARIO Parameters	
Restore Default	LIGKA Analysis (Testing)	IDS Merge	
	Scenario Summary Choice		

if HELENA does not converge or delivers problematic results, **CHEASE** be run before HELENA:

Equilibrium_code_chease (drop down)

typically, no changes in the defaults are needed (refer to CHEASE documentation) https://git.iter.org/projects/EQ/repos/chease/browse

X CHEASE PARAMET	ERS _ C	<	
CHEASE PARA	METERS		
EP WORKFLOW			
WORKFLOV	V PARAMETERS	ACTOR S	SELECTION
user machine shot_nr run_in machine_out run_out itime FURTHE ligka_541 ligka_5412	public ITER 131025 34 training 1 0 R SETTINGS	Equilibrium_code_chease Equilibrium_code Distributions_1 Distributions_2 Orbit_Finder Stability_code CHEASE Parameters HELENA Parameters LIGKA Parameters HAGIS 1 Parameters	Chease Helena 0 0 0
fast_particles hdf5 mpi_processes		HAGIS 2 Parameters FINDER Parameters	
Save Configuration	Save and Run	Species Settings	
Save Configuration as	Load Configuration	SCENARIO Parameters	
Restore Default	LIGKA Analysis (Testing)	IDS Merge	
Exit	Scenario Summary Choice		

Checking	entries i	n IDS:

module load Viz

viz

gateway: module load imas-viz viz

or:

then:

Local data so	urce Experiment data sou	
Usor namo	laubora	Actions Node Selection Actions Plot windows
lauberp		dataset_fair
Database	training	disruption distribution sources
		distributions
Snot number	131025	divertors
Run number	1	ec_launchers
		ece
IMAS databas	se browser	edge_profiles
 lauberp 		edge_sources
▼ MDS+	P	edge_transport
	SΔ	<pre>em_coupling </pre>
▶ SA		 occurrence 0 [displaying first time slice]
→ SPC	T	ids_properties (structure)
▶ che	ase_test	vacuum_toroidal_field (structure)
⊃ ci_t	ests	 Array of time_slice with 1 element(s)
▶ hele	ena_test	time_slice 1/1
▶ ids_	modification_test	documentation= Set of equilibria at various time slices
→ iet		boundary (structure)
> jet	,	 boundary_separatrix (structure) boundary secondary separatrix (structure)
⇒ pub	lic	 constraints (structure)
→ tcv		global_quantities (structure)
▶ test	_DB	 profiles_1d (structure)
Itest	LIGKA	documentation= Equilibrium profiles (1D radial grid) as a function of the poloidal flux
• trai	ning	psi [Wb] (FLT_1D)
	131025	psi_error_upper [Wb] (FLI_ID)
► HDE5	1	<pre>> phi [Wb] (FLT 1D)</pre>
		phi error upper [Wb] (FLT 1D)
		phi_error_lower [Wb] (FLT_1D)
		pressure [Pa] (FLT_1D)
		pressure_error_upper [Pa] (FLT_1D)
		pressure_error_lower [Pa] (FLT_1D)
		<pre>> f [I.m] (FLI_ID) > f orror upper [Tm] (FLT_ID)</pre>
		f error lower [Tm] (FLT 1D)
		dpressure dpsi [Pa.Wb^-1] (FLT 1D)
		dpressure_dpsi_error_upper [Pa.Wb^-1] (FLT_1D)
		dpressure_dpsi_error_lower [Pa.Wb^-1] (FLT_1D)
		> f_df_dpsi [T^2.m^2/Wb] (FLT_1D)
		f_df_dpsi_error_upper [T^2.m^2/Wb] (FLT_1D)
		$i_{al_apsi_error_lower[1 2.m 2/wb](FLI_ID)}$
		i tor error upper [A.m^-2] (FLT 1D)
		j tor_error_lower [A.m^-2] (FLT_1D)
		j_parallel [A/m ²] (FLT_1D)
		j_parallel_error_upper [A/m^2] (FLT_1D)
		▶ j_parallel_error_lower [A/m^2] (FLT_1D)
		<pre>p q [-] (FLI_ID) > d error upper [-] (FLT_ID)</pre>
		<pre>> g_error_lower [-] (FLT_1D)</pre>
		▶ magnetic shear [-] (FLT 1D)
		magnetic_shear_error_upper [-] (FLT_1D)
		magnetic_shear_error_lower [-] (FLT_1D)
		r_inboard [m] (FLT_1D)
		Log
		04/07/2023 15:15:32 INFO Occurrence 0 of equilibrium IDS in memory, building view
	Open	04/07/2023 15:15:32[INFO]Building tree view took 0.07254147529602051 seconds.] 04/07/2023 15:15:32[INFO]View undate ended l
	open	stronzozo 15.15.5zhini oliview update ended.j

first check if data exists:

Is -Itr ~/public/imasdb/training/3/0/

idsdump lauberp training 3 131025 1 equilibrium/0 > eq_occ_0 idsdump lauberp training 3 131025 1 equilibrium/1 > eq_occ_1

use editor to look at the files

Run analytical, local LIGKA: model 5

<min_n_tor>10</min_n_tor> ! start search from this minimal tor. mode number <max_n_tor>10</max_n_tor> ! end search from this max tor. mode number <min_m>10</min_m> ! start poloidal mode number (nq-m=0, BAEs; q_{TAE}=(m+0.5)/n) ; for next n, look for (m+1+0.5)/n! <max_m>11</max_m> ! number of gaps to be searched: for one (main) TAE gap use max_m=min_m

Stability code (drop down): Ligka_m5

LIGKA Parameters

Save & Run

Initial Output Saved Ligka_m5 mhd_linear under occurrence 0 **************

Workflow Finished.

<u>check/visualise results:</u>

idsdump lauberp training 3 131025 1 mhd_linear/0 > mhd_occ_0

or look at additionally written ASCII files in local dir or ~/ !

X LIGKA PARAMETER	s 2		
LIGKA PARAN	ETERS		
modus 5 min_n_ter 10 max_n_tor 10 min_m 10 max_m 11			
	PARAMETERS	ACTOR	SELECTION
user machine shot_nr	public ITER 131025	Equilibrium_code_chease Equilibrium_code Distributions_1	0 0 0
run_in machine_out run_out	34 training 1	Distributions_2 Orbit_Finder Stability_code	0 0 Ligka_m5
FURTHER	0 R SETTINGS	CHEASE Parameters HELENA Parameters	
ligka_541		LIGKA Parameters]
pulse_list		HAGIS 1 Parameters	
fast_particles		HAGIS 2 Parameters	
mpi_processes	1	FINDER Parameters	
Save Configuration	Save and Run	Species Settings	
Save Configuration as	Load Configuration	SCENARIO Parameters	
Restore Default	LIGKA Analysis (Testing)	IDS Merge	per est
	Scenario Summary Choice		

check/visualise results: viz

try different n and m ranges...

	Database: training, user: lauberp, shot: 131025, run: 1
ws	
ce]	

documentation = Core plasma radial profiles for various time slices

documentation= Vector of toroidal modes. Each mode is described as exp(i(n_tor.phi - m_pol.theta - 2.pi.freque...

```
m_pol_dominant_error_upper=-9e+40 [-] (FLT_0D)
m pol_dominant_error_lower=-9e+40 [-] (FLT_0D)
radial mode number=0.5842584258425843 [-] (FLT 0D)
    documentation = Radial mode number
    name=mhd_linear.time_slice[0].toroidal_mode[12].radial_mode_number (STR_0D)
radial mode_number_error_upper=-9e+40 [-] (FLT_0D)
radial mode number error lower=-9e+40 [-] (FLT 0D)
 growthrate=-36.55854713815936 [Hz] (FLT_0D)
 growthrate_error_upper=-9e+40 [Hz] (FLT_0D)
 growthrate_error_lower=-9e+40 [Hz] (FLT_0D)
frequency=81226.64386648593 [Hz] (FLT_0D)
frequency_error_upper=-9e+40 [Hz] (FLT_0D)
frequency_error_lower=-9e+40 [Hz] (FLT_0D)
```


ASCII files in local directory: loc_<AE-type>_mode<LIGKA model>_<time_stamp> e.g.: loc_TAE_mode5_00208000

Note: the output for the global models 1 and 2 are similar: e.g. glo_TAE_mode1_00208000, glo_TAE_mode2_00208000

description of columns in ASCII files: note that model 5 does not fill cols 14-23; model 4 adds 14,15; model 1: 16-19; model 2: 20-23

```
1 radial position of mode in s=sqrt(norm_pol_flux)
2 corresponding q value
3 toroidal mode number
4 dominant poloidal mode number (for TAEs: m, and not m+1)
5 frequency, analytical estimate in units of omega_A0=B_0/sqrt(m_ion * n_0 mu_0) on axis values
6 radiative damping, formula S.D. Pinches 2015 (to be checked) in gamma/omega!
7 local beta at gap/mode rational surface: 2.0d0*press(s)*mu0/Btor(s)**2!
8 mode type: 0=GAM-EGAM/1=TAE/2=RSAE/3=BAE/4=EAE/5=NAE/6=EPM/7=BAAE/8=KBM/9=ITG,10 even TAE, 10 odd TAE: 11
9 estimated radial width: s/m (large shear), s/m sqrt(eps/shear) small shear (Candy Phys Lett A 215, 299–304, 1996)
10 mode frequency in rad/s (divide by 2 pi for Hertz) hint: dividing this value by value of col 5 gives omega_A0
11 TAE frequency using Fesenyuk's analytical expression (Fesenyuk PoP 20, 2013)
12 not used
13 not used
14 real frequency of continuum extremum belonging to mode - model 4
15 imaginary frequency of continuum extremum belonging to mode - model 4
16 real frequency model 1
17 imaginary frequency model 1
18 m_min used in model 1 run
19 m_max used in model 1 run
20 real frequency model 2
21 imaginary frequency model 2
22 m_min used in model 2 run
23 m_max used in model 2 run
24: IMAS only: time index itime
25: IMAS only: equilibrium_in%time(itime): absolute time
26: not used
27: not used
28 unstable mode? negative: mode damped, positive: mode unstable
29: direction of phase jump: positive correct, negative - possible problem with mode - check response file
30: distance to next gap
31: distance to previous gap
32: omega/omega_A0 of next gap
33: omega/omega_A0 of previous gap
and so on in block of 4 for the next order gaps
```

use favourite plotting tool, or python script: (to be added) e.g. gnuplot

plot 'loc_TAE_mode5_00208000' u 1:5

try different n and m ranges...

LIGK	A PARAMETERS
modus	5
min_n_tor	1
max_n_tor	40
min_m	-5
max_m	40

with gnuplot:

plot 'loc_TAE_mode5_00208000' u 1:3:5 palette

	LIGKA P	ARAMETERS
	modus	5
	min_n_tor	1
	max_n_tor	40
	min_m	1
with gnuplot:	max_m	2

plot 'loc_TAE_mode5_00208000' u 1:3:5 palette

algorithm is designed find: $q_TAE=(m+0.5)/n$

for increasing n also m is increased: (n=1,m=1); (n=2,m=2); (n=3,m=3);...

logical choice to follow TAE branches for q~1

i.e. the pair (min_n, min_m) defines the relative difference between n and m that is kept the same when scanning n

using like in this example min_m=1 and m_max=2 gives two TAE branches:

(n=1,m=1) ; (n=2,m=2) ; (n=3,m=3);... (n=1,m=2) ; (n=2,m=3) ; (n=3,m=4);...

plot 'loc_TAE_mode5_00208000' u 1:(\$10/6.28/1000):3 palette 90

if you want to compare to experiment, add n*tor_rot to each mode!

plot 'loc_TAE_mode5_00208000' u 1:3:9:5 with xerrorbars palette

add estimate of radial mode width

gives hints about resonance overlap regions

'loc_TAE_mode5_00208000' u 1:3:9:5 ⊢+−-

Run analytical, local LIGKA: model 4

model 4 takes all modes found in previous model 5 run! run mode 5 with restricted set of modes, since model 4 is slightly more expensive (5s per mode) - local integration in complex plane, one pol. sideband, hardcoded (physics model see lecture!)

	LIGKA PARA	AMETERS	
Ctability, as de (due b. deuxa), lieles as d	modus 5		
Stability code (arop down): Ligka_m4	min_n_tor 10		
	max_n_tor 10		
LIGKA Parameters	min_m 10		
Sava & Dun	max_m 11		
Save & Run	X EP WORKFLOW		
	WORKFLO	ACTOR	
	user	public	Equilibrium_code_chease
Initial Output	machine	ITER	Equilibrium_code
Saved Ligka_m4 mhd_linear under	shot_nr	131025	Distributions_1
occurrence 1	run_in	34	Distributions_2
***************************************	machine_out	training	Orbit_Finder
Workflow Finished.	run_out	1	Stability_code
	itime	0	CHEASE Parameters
	FURTH	HELENA Parameters	
	ligka_541		LIGKA Parameters
	ligka_5412		
	pulse_list		HAGIS 1 Parameters
	fast_particles		HAGIS 2 Parameters
	hdf5		
	mpi_processes	1	FINDER Parameters
	Save Configuration	Save and Run	Species Settings
	Save Configuration as	Load Configuration	SCENARIO Parameters
	Restore Default	LIGKA Analysis (Testing)	IDS Merge
		Scenario Summary Choice]
	Exit		
		angee 2.00	10.1

X LIGKA PA	RAMETERS <2>	
LIG	A PARAMETERS	
modus	5	
min_n_tor	10	
max_n_tor	10	
min_m	10	
max_m	11	
V		

ACTOR SELECTION

0	•
0	
0	•
0	•
0	•
Ligka_m4	•

ASCII files in local directory: loc_<AE-type>_mode<LIGKA model>_<time_stamp> e.g.: loc_TAE_mode4_00208000

Note: the output for the global models 1 and 2 are similar: e.g. glo_TAE_mode1_00208000, glo_TAE_mode2_00208000

description of columns in ASCII files: note that model 5 does not fill cols 14-23; model 4 adds 14,15; model 1: 16-19; model 2: 20-23

```
1 radial position of mode in s=sqrt(norm_pol_flux)
2 corresponding q value
3 toroidal mode number
4 dominant poloidal mode number (for TAEs: m, and not m+1)
5 frequency, analytical estimate in units of omega_A0=B_0/sqrt(m_ion * n_0 mu_0) on axis values
6 radiative damping, formula S.D. Pinches 2015 (to be checked)
7 local beta at gap/mode rational surface: 2.0d0*press(s)*mu0/Btor(s)**2!
8 mode type: 0=GAM-EGAM/1=TAE/2=RSAE/3=BAE/4=EAE/5=NAE/6=EPM/7=BAAE/8=KBM/9=ITG,10 even TAE, 10 odd TAE: 11
9 estimated radial width: s/m (large shear), s/m sqrt(eps/shear) small shear (Candy Phys Lett A 215, 299–304, 1996)
10 mode frequency in rad/s (divide by 2 pi for Hertz)
11 TAE frequency using Fesenyuk's analytical expression (Fesenyuk PoP 20, 2013)
12 not used
13 not used
14 real frequency of continuum extremum belonging to mode – model 4
15 imaginary frequency of continuum extremum belonging to mode - model 4
16 real frequency model 1
17 imaginary frequency model 1
18 m_min used in model 1 run
19 m_max used in model 1 run
20 real frequency model 2
21 imaginary frequency model 2
22 m_min used in model 2 run
23 m max used in model 2 run
24: IMAS only: time index itime
25: IMAS only: equilibrium_in%time(itime): absolute time
26: not used
27: not used
28 unstable mode? negative: mode damped, positive: mode unstable
29: direction of phase jump: positive correct, negative - possible problem with mode - check response file
30: distance to next gap
31: distance to previous gap
32: omega/omega_A0 of next gap
33: omega/omega_A0 of previous gap
and so on in block of 4 for the next order gaps
```

use favourite plotting tool, or python script: (to be added) e.g. gnuplot

plot 'loc_TAE_mode5_00208000' u 1:5

should be filled now in **loc_TAE_mode4_00208000**

plot 'loc_TAE_mode4_00208000' u 1:5 ps 2 pt 7, 'loc_TAE_mode4_00208000' u 1:14 ps 2 pt 3

or:

idsdump lauberp training 3 131025 1 mhd_linear/1 > mhd_occ_1

check/visualise results: viz - problems with occurrences!

Run analytical, global LIGKA: model 1

Stability code (drop down): Ligka_ml

LIGKA Parameters

Save & Run

Initial Output Saved Ligka_m1 mhd_linear under occurrence 2

Workflow Finished.

Run analytical, global LIGKA: model 1

- model 1 takes all modes found in previous model 4 run!
- use more than one proc (2,4,8,16,32) are typically good choices use batch script to submit! (see below)
- region with coarse resolution; possible issues with dense multiple modes
- •use number of poloidal sidebands as given in LIGKA configuration menu/xml file
- enough: sidebands=2....16 (2*sb+1 total pol. harmonics)
- •typically, mode pol. sidebands are needed on the high-m side: e.g. if central m's are 10 and 11, it is controls this:
 - •0: symmetrically around main m
 - positive (smaller than 2*sidebands+1): move pol. harmonics window to larger m
 - negative (abs smaller than 2*sidebands+1): move pol. harmonics window to smaller m
- this is not the case for strongly reversed shear profiles
- if LIGKA stores the **first** mode it finds with a damping rate smaller than ~15%.
- the example above

•run mode 5,4 with **restricted** set of modes, since model 1 is more expensive (minutes-hours **per** mode)

•model 1 scans the TAE gap region using LIGKA's antenna model (approx 40 iterations): scan whole gap

•typically, more pol. sidebands are needed low and intermediate n's. For high-n's two sidebands are often

better to choose m=8...16 than m=6...14 or m=4...12 reason: q increases and becomes steeper towards the edge, coupling to outer pol. harmonics with larger m is typically found : the parameter sideband_asy

• other even TAEs that can reside in the same gap, are found by scanning other pairs of main (n,m) - as in

ASCII files in local directory: loc_<AE-type>_mode<LIGKA model>_<time_stamp> e.g.: loc_TAE_mode5_00208000

Note: the output for the global models 1 and 2 are similar: e.g. glo_TAE_mode1_00208000, glo_TAE_mode2_00208000

description of columns in ASCII files: note that model 5 does not fill cols 14-23; model 4 adds 14,15; model 1: 16-19; model 2: 20-23

```
1 radial position of mode in s=sqrt(norm_pol_flux)
2 corresponding q value
3 toroidal mode number
4 dominant poloidal mode number (for TAEs: m, and not m+1)
5 frequency, analytical estimate in units of omega_A0=B_0/sqrt(m_ion * n_0 mu_0) on axis values
6 radiative damping, formula S.D. Pinches 2015 (to be checked)
7 local beta at gap/mode rational surface: 2.0d0*press(s)*mu0/Btor(s)**2!
8 mode type: 0=GAM-EGAM/1=TAE/2=RSAE/3=BAE/4=EAE/5=NAE/6=EPM/7=BAAE/8=KBM/9=ITG,10 even TAE, 10 odd TAE: 11
9 estimated radial width: s/m (large shear), s/m sqrt(eps/shear) small shear (Candy Phys Lett A 215, 299–304, 1996)
10 mode frequency in rad/s (divide by 2 pi for Hertz)
11 TAE frequency using Fesenyuk's analytical expression (Fesenyuk PoP 20, 2013)
12 not used
13 not used
14 real frequency of continuum extremum belonging to mode - model 4
15 imaginary frequency of continuum extremum bel
16 real frequency model 1
17 imaginary frequency model 1
18 m_min used in model 1 run
19 m max used in model 1 run
20 real frequency model 2
21 imaginary frequency model 2
22 m_min used in model 2 run
23 m max used in model 2 run
24: IMAS only: time index itime
25: IMAS only: equilibrium_in%time(itime): absolute time
26: not used
27: not used
28 unstable mode? negative: mode damped, positive: mode unstable
29: direction of phase jump: positive correct, negative - possible problem with mode - check response file
30: distance to next gap
31: distance to previous gap
32: omega/omega_A0 of next gap
33: omega/omega_A0 of previous gap
and so on in block of 4 for the next order gaps
```

use favourite plotting tool, or python script: (to be added) e.g. gnuplot

```
plot 'loc_TAE_mode5_00208000' u 1:5
```

try different n and m ranges...

should be filled now in glo_TAE_mode1_00208000

gnuplot

plot 'loc_TAE_mode4_00208000' u 1:5 ps 2 pt 7, 'loc_TAE_mode4_00208000' u 1:14 ps 2 pt 3, 'glo_TAE_mode1_00208000' u 1:16 ps 3 pt 9

Run analytical, global LIGKA: model 2

model 2 uses the model 1 result to to iterate and to determine accurately f, gamma and mode structure

needs less iterations, stops calculation after mode has been found

Stability code (drop down): Ligka_m2

LIGKA Parameters

Save & Run

Initial Output Saved Ligka_m2 mhd_linear under occurrence 6

Workflow Finished.

user machine shot_nr run_in machine_out run_out itime

ligka_541 ligka_5412 pulse_list fast_particles hdf5 mpi_processes Save Configuration Save Configuration as Restore Default Exit

ARAMETERS		
SKA PARAMETERS		
2		
10		
10		
10	ĪN	
11		
3		
y 1		
1		
KELOW		

WORKFLOW PARAMETERS

FURTHER SETTINGS

ASCII files in local directory: loc_<AE-type>_mode<LIGKA model>_<time_stamp> e.g.: loc_TAE_mode5_00208000

Note: the output for the global models 1 and 2 are similar: e.g. glo_TAE_mode1_00208000, glo_TAE_mode2_00208000

description of columns in ASCII files: note that model 5 does not fill cols 14-23; model 4 adds 14,15; model 1: 16-19; model 2: 20-23

```
1 radial position of mode in s=sqrt(norm_pol_flux)
2 corresponding q value
3 toroidal mode number
4 dominant poloidal mode number (for TAEs: m, and not m+1)
5 frequency, analytical estimate in units of omega_A0=B_0/sqrt(m_ion * n_0 mu_0) on axis values
6 radiative damping, formula S.D. Pinches 2015 (to be checked)
7 local beta at gap/mode rational surface: 2.0d0*press(s)*mu0/Btor(s)**2!
8 mode type: 0=GAM-EGAM/1=TAE/2=RSAE/3=BAE/4=EAE/5=NAE/6=EPM/7=BAAE/8=KBM/9=ITG,10 even TAE, 10 odd TAE: 11
9 estimated radial width: s/m (large shear), s/m sqrt(eps/shear) small shear (Candy Phys Lett A 215, 299–304, 1996)
10 mode frequency in rad/s (divide by 2 pi for Hertz)
11 TAE frequency using Fesenyuk's analytical expression (Fesenyuk PoP 20, 2013)
12 not used
13 not used
14 real frequency of continuum extremum belonging to mode - model 4
15 imaginary frequency of continuum extremum belonging to mode - model 4
16 real frequency model 1
17 imaginary frequency model 1
18 m_min used in model 1 run
<u>19 m max used in model 1 run</u>
20 real frequency model 2
21 imaginary frequency model 2
22 m_min used in model 2 run
23 m max used in model 2 run
24: IMAS only: time index itime
25: IMAS only: equilibrium_in%time(itime): absolute time
26: not used
27: not used
28 unstable mode? negative: mode damped, positive: mode unstable
29: direction of phase jump: positive correct, negative - possible problem with mode - check response file
30: distance to next gap
31: distance to previous gap
32: omega/omega_A0 of next gap
33: omega/omega_A0 of previous gap
and so on in block of 4 for the next order gaps
```

use favourite plotting tool, or python script: (to be added) e.g. gnuplot

```
plot 'loc_TAE_mode5_00208000' u 1:5
```

try different n and m ranges...

should be filled now in glo_TAE_mode2_00208000

gnuplot

plot 'loc_TAE_mode4_00208000' u 1:5 ps 2 pt 7, 'loc_TAE_mode4_00208000' u 1:14 ps 2 pt 3, 'glo_TAE_mode1_00208000' u 1:16 ps 3 pt 9, 'glo_TAE_mode2_00208000' u 1:20 ps 3 pt 8

usage: plot_EF_ids.py [-h] [-user USER] [-database DATABASE] [-backend BACKEND] [-version VERSION] [-shot SHOT] [-run RUN] [-itimes [ITIMES [ITIMES ...]]] [-times [TIMES [TIMES ...]]] [-ntor [NTOR [NTOR ...]]] [-mpol [MPOL [MPOL ...]]] [-imode [IMODE [IMODE ...]]] [-occurrence OCCURRENCE] [-plot_per_mode PLOT_PER_MODE] [-plot_per_time PLOT_PER_TIME] [-interactivePlots INTERACTIVEPLOTS]

plot_EF_ids.py -database training -shot 131025 -run 1 -user lauberp

plot 'EF_wrap_n10_1_00208000' w lp

0.8

idsdump lauberp training 3 131025 1 mhd_linear/6 > mhd_occ_6

plot_EF_ids.py -user=lauberp -database=training -shot=131025 -run=1 -times 1 -occurrence=6 -interactivePlots=1

usage: plot_EF_ids.py [-h] [-user USER] [-database DATABASE] [-backend BACKEND] [-version VERSION] [-shot SHOT] [-run RUN] [-itimes [ITIMES [ITIMES ...]]] [-times [TIMES [TIMES ...]]] [-ntor [NTOR [NTOR ...]]] [-mpol [MPOL [MPOL ...]]] [-imode [IMODE [IMODE ...]]] [-occurrence OCCURRENCE] [-plot_per_mode PLOT_PER_MODE] [-plot_per_time PLOT_PER_TIME] [-interactivePlots INTERACTIVEPLOTS]

or: ASCII files in run-directory:

structure EF_wrap files:

number of radial points, number of pol. harmonics

Imag (omega [1/s]), Re (omega [rad/s]), Imag (omega/omega_A0), Re (omega/omega_A0)

range of pol. harmonics

col 1: s=sqrt(norm_pol_flux) col 2: Re[e.s. potential] col 3: Im[e.s. potential] col 4: Re[e.s. potential]/ds col 5: Im[e.s. potential]/ds col 6: Re[e.s. potential]dds col 7: Im[e.s. potential]/dds col 8: Re[e.m. potential] col 9: Im[e.m. potential] col 10: Re[e.m. potential]/ds col 11: Im[e.m. potential]/ds col 12: Re[e.m. potential]/dds col 13: Im[e.m. potential]/dds

- model sequence 5-4-1-2 is the standard WF;
- tick to run all steps in sequence
- runtime with 2 procs, two modes: 4.5 mins;
- •i.e.: 7 pol harmonics on 2 proc -> 2.2 mins per mode
- model 5,4: only 10s
- for higher equilibrium resolution: run helena with larger nrmap, npmap: 128/256/384 (512 presently not allowed)
- note that 'ligka_5412' button overrules 'modus' and 'Stability_code' selection
- note that Stability_code' selection button 'overrules' 'modus' in LIGKA menu

run without gui:

ep_nogui -c ./<name of configuration directory>

edit xml files by hand -> same structures, since gui is generated from xml files

please use batch nodes for submitting larger jobs!

export SBATCH_TIMELIMIT=00:30:00 (in case you want to use the 30 mins debug queue)

ep_batch -n 8 -t 1 -e my@email.org -q gen10_debug -c <dir with xml files>/

use gen10_ib for production jobs!

gateway: ep_batch -n 4 -t 1 -e email@aa.bb -q gw -c /<profile>

- 1. use CHEASE + HELENA + model5 : narrow down to the set of 'interesting/revelant' modes
- 2. press 5/4/1/2 on reduced set of modes; set a sensible range of sidebands

remember:

if you reprocess the equilibrium (HELENA, CHEASE selected), all LIGKA results in mhd_linear will be deleted (not to create inconsistencies between equilibrium and linear analysis). Please re-run, starting from model 5! or tick 5/4/1/2

Two different kinds of setting-up runs:

gui edit xml files

definition of TAE range: suggested exercise: look at the model 5 results of:

<min_n_tor>10</min_n_tor>	<min_n_tor>10</min_n_tor>	<
<max_n_tor>10</max_n_tor>	<max_n_tor>10</max_n_tor>	<r< td=""></r<>
<min_m>10</min_m>	<min_m>10</min_m>	
<max_m>10</max_m>	<max_m>11</max_m>	

1 mode: (10, 10)

2 modes: (10,10); (10,11)

issues to be fixed:

- itime to start at 1 (not 0)
- fix printout of (wrong) shot number in LIGKA output

Two different kinds of looking at results:

- plot data mhd_linear IDS
- use ASCII output in local folder or ~/
- idsdump as last resort to check output

<min n tor>10</min n tor> cmin_n_tor>10</min_n_tor> max_n_tor>11</max_n_tor> <min_m>10</min_m> <max_m>10</max_m>

2 modes: (10, 10)(11, 11)

<max_n_tor>11</max_n_tor> <min_m>10</min_m> <max_m>11</max_m>

4 modes: (10,10); (10,11)(11,11); (11,12)

reduced mhd/ kinetic spectra:

model 6 performs a local matrix inversion in the MHD limit for each mode found with model 5; modes with the same toroidal mode number a skipped

Saved Ligka_m6 mhd_linear under occurrence 5

ASCII: spectrum_n10_<time_str>

```
col 1: s=sqrt(norm_pol_flux)
```

- col 2: omega/omega_A0
- col 4: f[kHz]
- col 8: s=sqrt(norm_tor_flux)

	_	 	
		БИЕ	
		N N F	
-			

WORKFLOW PARAMETERS		ACTOR	SELECTION
user	public	Equilibrium_code_chease	0
machine	ITER	Equilibrium_code	0
shot_nr	131025	Distributions_1	0
run_in	34	Distributions_2	0
machine_out	training	Orbit_Finder	0
run_out	3	Stability_code	Ligka_m6
itime	0	CHEASE Parameters	
FURTHER	SETTINGS	HELENA Parameters	
ligka_541		LIGKA Parameters	
ligka_5412			1
pulse_list		HAGIS 1 Parameters	
fast_particles		HAGIS 2 Parameters]
hdf5			1
mpi_processes	1	FINDER Parameters	
Save Configuration	Save and Run	Species Settings	
Save Configuration as	Load Configuration	SCENARIO Parameters	
Restore Default		IDS Merge	
	Scenario Summary Choice		
Exit			

reduced mhd/ kinetic spectra:

model 6 performs a local metric inversion in the MHD limit for each mode found with model 5; modes with the same toroidal mode number a skipped

Saved Ligka_m6 mhd_linear under occurrence 5

```
ASCII:
spectrum_n10_<time_str>
col 1: s=sqrt(norm_pol_flux)
col 2: omega/omega_A0
col 4: f[kHz]
col 8: s=sqrt(norm_tor_flux)
```


EP WORKFLOW

WORKFLOW PA	ARAMETERS	ACTOR S	SELECTION
user	public	Equilibrium_code_chease	0
machine	ITER	Equilibrium_code	0
shot_nr	131025	Distributions_1	0
run_in	34	Distributions_2	0
machine_out	training	Orbit_Finder	0
run_out	3	Stability_code	Ligka_m6
itime	0	CHEASE Parame ers	
FURTHER S	ETTINGS	HELENA Parameters	
ligka_541		LIGKA Parameters	1
ligka_5412			
pulse_list		HAGIS 1 Parameters	
fast_particles		HAGIS 2 Parameters	1
hdf5			1
mpi_processes	1	FINDER Parameters	
Save Configuration	Save and Run	Species Settings	
Save Configuration as	Load Configuration	SCENARIO Parameters	
Restore Default		IDS Merge	
S	cenario Summary Choice		
Exit			

Why are these even TAEs not in the lower part of the gap?

pressure upshift & diamagnetic effects missing in reduced MHD model!

kinetic spectrum: model 3

model 3 performs a local kinetic solve for each mode found model 5; modes with the same toroidal mode number a skipped default values: start at omega=(1.0,-0.04) to (0.0,0.01) omega radius of integration circle: 0.02

manual settings: <guess_start>0.7</guess_start> start of Re (guess) <guess_end>0.1</guess_end> end of Re(guess) <offset_d>0.02</offset_d> offset ± Im(guess) <d_guess>0.001</d_guess> radius of integration circle

Saved Ligka_m3 mhd_linear under occurrence 7

if run in parallel mode:

cat spectrum_kin_n10_00208000_1* > kin_spectrum_n10_

Note: due to asynchronous nature of result on different proce the IDS is not yet filled - will soon provide script to do this after run

ASCII: kin_spectrum_n10_<time_str>

col 1: s=sqrt(norm_pol_flux) col 2: Re(omega)/omega_A0

col 3: Im(omega)/omega_A0

note: for MHD-type pressure coupling model, e.g. use FALC

	X LIGKA PARAMETERS				
with		TEDC			
VVILII	LIGKA PARAME	TERS			
	modus 3				
	min_n_tor 10				
a AO	max_n_tor 10				
	min_m 10		_		
	max_m II		_		
	sidebands asy 2		_		
	mode type 1		_		
	WORKFLOW	PARAMETER	s	ACTOR	SELECTION
	ucor	public		Equilibrium codo chosso	0
	user	ривис		Equilibrium_code_cnease	0
	shot pr	131025		Distributions 1	0
	rup in	34		Distributions_2	0
	machine out	training		Orbit_Finder	0
	run out	1		Stability_code	Ligka_m3
	itime	0		CHEASE Parameters	
	FURTHER	SETTINGS		HELENA Parameters	
00208000	ligka_541		Г	LIGKA Parameters	
-	ligka_5412				1
e corc	pulse_list		Г	HAGIS 1 Parameters	1
, , , , , , , , , , , , , , , , , , , ,	fast_particles			HAGIS 2 Parameters	
ter the	hdf5		Г		1
	mpi_processes	8		FINDER Parameters	
	Save Configuration	Save and	l Run	Species Settings	
	Save Configuration as	Load Config	juration	SCENARIO Parameters	
	Restore Default	LIGKA AI	· · · · · · · · · · · · · · · · · · ·		l
		Scenario	+		
	- 1	1	-		
	Exit				
		0.05			
		0.95			
		0.9	-		
		0.85			
		0.8			
CON, or C	ASTOR				
			-0.06	-0.04 -0.02	0 0

.02

kinetic spectrum: model 3

model 3 performs a local kinetic solve for each mode found with model 5; modes with the same toroidal mode number a skipped default values: start at omega=(1.0,-0.04) to (0.0,0.01) omega_A0

radius of integration circle: 0.02

manual settings: <guess_start>0.7</guess_start> start of Re (guess) <guess_end>0.1</guess_end> end of Re(guess) <offset_d>0.02</offset_d> offset ± Im(guess) <d_guess>0.001</d_guess> radius of integration circle

Saved Ligka_m3 mhd_linear under occurrence 7

if run in parallel mode:

cat spectrum_kin_n10_00208000_1* > kin_spectrum_n10_00208000

ASCII:

- col 1: s=sqrt(norm_pol_flux)
- col 2: Re(omega)/omega_A0
- col 3: Im(omega)/omega_A0

note: for MHD-type pressure coupling model, e.g. use FALCON, or CASTOR

mode_type	1
even	0
соср	1
start_pos	1
guess_start	0.7
guess_end	0.1
deset_d	0.04
d_guess	0.01

Note: there is a fast, crude guess for mode structures available in mode 5 - also in IDS

plot 'EF_wrap_n10_00208000' w lp , 'EF_ana_write_n10_00208000' w lp

not too bad!

presently improved using various methods [V.-A. Popa]

other types of modes: odd TAEs

please change directory and output IDS! files will be overwritten! also clear/move files in home-directory!

even: 0 (even TAE, EAE) even: 1 (odd TAE, EAE) even: 2 (both odd and even)

- note that 'ligka_5412' button overrules 'modus' and 'Stability_code' selection
- note that Stability_code' selection button 'overrules' 'modus' in LIGKA menu

co and counter propagating modes:

in LIGKA, co-propagation is defined as ion diamagnetic direction (=driven/damped by typical negative gradient of ions) counter-propagation as electrons as diamagnetic direction (=driven by off-axis heating schemes)

settings in LIGKA:

```
mode_type: 1 (co-propagating TAE)
mode_type: -1 (counter-propagating TAE)
```

cocp: 1 (calculate only only one type of mode, as set in mode_type) cocp: 2 (calculate both co/cp propagating modes) default: 1

mode frequencies are positive for co-propagating modes mode frequencies are negative for counter-propagating modes

run also model 3 to check that mode is close to kinetic continuum... note! damping is large, need to go deeper in negative complex plane

BAEs: no weekly damped BAEs found - see other cases....

WORKFLOW	PARAMETERS	A
user	public	Equilibrium_code
machine	ITER	Equilibrium_code
shot_nr	131025	Distributions_1
run_in	34	Distributions_2
machine_out	training	Orbit_Finder
run_out	5	Stability_code
itime	0	CHEASE Paran
FURTHE	R SETTINGS	HELENA Paran
ligka_541		LIGKA Param
ligka_5412		✓
pulse_list		HAGIS 1 Parar
fast_particles		HAGIS 2 Parar
hdf5		
mpi_processes	8	FINDER Param
Save Configuration	Save and Run	Species Sett
Save Configuration as	Load Configuration	SCENARIO Para
Restore Default	LIGKA Analysis (Testing)	IDS Merg
	Scenario Summary Choice	

strongly damped! no global BAE can be found with these parameters, no mode calculated.

			modus	5
CTOR S	SELECTION		min_n_tor	19
_chease	Chease	-	max_n_tor	19
1	Helena		min_m	20
	0	-	max_m	20
	0	-	sidebands	2
	0	•	sidebands_asy	0
	Ligka_m5	•	mode_type	3
neters			even	1
			соср	1
neters			start_pos	1
eters			force_m	false
	1		guess_start	0.0
meters			guess_end	0.0
meters			offset_d	0.0
	E Contraction of the second seco		d_guess	0.0
neters			npsi_out	128
tinas			kr_read	0.0
			q0	0.0d0
ameters			rad_start	0.0
le			Sa	ive LIGKA Configuration

time dependent cases: (METIS 130012,2), credits M. Schneider

X EP WORKFLOW				X LIGKA PAR	AMETERS	_ D ×
WORKFLOW	FARAMETERS	ACTOR S	SELECTION	LIGKA	A PARAMETERS	
user machine shot_nr run_in machine_out run_out itime FURTHEN Iigka_541 Iigka_5412 pulse_list fast_particles hdf5 mpi_processes Save Configuration Save Configuration as Restore Default	public ITER 130012 2 training 10 23-25,30,35 R SETTINGS	Equilibrium_code_chease Equilibrium_code Distributions_1 Distributions_2 Orbit_Finder Stability_code CHEASE Parameters HELENA Parameters HAGIS 1 Parameters HAGIS 2 Parameters FINDER Parameters Species Settings SCENARIO Parameters IDS Merge	0 0 0 0 Ligka_m5	 modus min_n_tor max_n_tor min_m max_m sidebands_asy mode_type even cocp start_pos force_m guess_start guess_end offset_d d_guess npsi_out kr_read 	5 1 50 -1 10 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0.0 0.0 0.0 0.0 128 0.0 128 0.0 128 0.0 IXACONFIGURATION	

plot [0:1]'loc_TAE_mode5_00101730' u 1:3:5 palette, 'loc_TAE_mode5_00112867' u 1:3:5 palette pt 8

to run in with no-gui: ep_nogui -c ./<name_of _configuration_files_folder>

to run with batch: ep_batch -n 8 -t 1 e email@your.domain -q gen10_debug -c ./<name_of _configuration_files_folder>

check status: squeue -u \$USER

note: in earlier ramp-up phase of some shots e.g. 100015, helena does not converge for some time points can be fixed with changing internal resolution for solver

		_

🔀 EP WORKFLOW					X LIGKA PAR	AMETERS	_ D X
WORKFLOW PARAMETERS		ACTOR SELECTION		LIGKA PARAMETERS			
user	public	Equilibrium_code_chease	0	-	modus	5	
machine	ITER	Equilibrium_code	0	•	min_n_tor	1	
shot_nr	130012	Distributions_1	0	•	max_n_tor	50	
run in	2	Distributions_2	0	•	min m	-1	
machine out	training	Orbit_Finder	0	-	max m	10	1
run out	10	- Stability_code	Ligka_m5	•	sidebands	2	
itime	23-25,30,35	CHEASE Parameters			sidebands_asy	0	
FURTHER SETTINGS		HELENA Parameters			mode_type	1	
TORTIL	IN SETTINGS	neeen and an article			even	0	
ligka_541		LIGKA Parameters		1	соср	1	
ligka_5412			1		start pos	1	
pulse_list		HAGIS 1 Parameters			force m	false	
fast_particles	Г	HAGIS 2 Parameters	Ĩ.	_	guess start	0.0	
hdf5	E C		1		guess end	0.0	
mpi_processes	1	FINDER Parameters			offset_d	0.0	
Save Configuration	Save and Run	Species Settings	T I		d_guess	0.00	
			1		npsi_out	128	
Save Configuration as	Load Configuration	SCENARIO Parameters		8. 	kr_read	0.0	
Restore Default	LIGKA Analysis (Testing)	IDS Merge		8	Sa	ave LIGKA Configuration	
	Scenario Summary Choice						
Exit							

runs mode 5 for all time points runs mode 4 for all time points runs mode 1 for all time points runs mode 2 for all time points

plot 'all_loc_TAE_mode4' u 25:(\$6+(\$15/\$14)), 'all_loc_TAE_mode4' u 25:(\$6)

plot 'all_glo_TAE_mode2' u 25:(\$6+(\$15/\$14)) , 'all_glo_TAE_mode2' u 25:((\$21/\$20))

switch on EPs (use equivalent Maxwellian)

spec el: vth/va0	12.	0004421963921	
spec dd: vth/va0	0.19	1839372477651	
spec tt: vth/va0	0.15	6636191715323	
spec al: vth/va0	1.1	4083538370134	
T [kev] el	=	25.7043368943448	8.217748166356718E-002
P [Pa] el	=	417690.723618820	585.617821383136
n [m^-3] el	=	1.014233456772389E+020	4.447858509848111E+019
n_dpsi [m^-3] el	=	31163219437.6700	-2.304975191055403E+021
T [kev] dd	=	24.1221553701961	7.762676065491934E-002
P [Pa] dd	=	194794.456456403	276.583677453482
n [m^-3] dd	=	5.040225764363166E+019	2.223845390113919E+019
n_dpsi [m^-3] dd	=	2.923650015250022E+016	-1.152485181787519E+021
T [kev] tt	=	24.1221553701961	7.762676065491934E-002
P [Pa] tt	=	194794.456456403	276.583677453482
n [m^-3] tt	=	5.040225764363166E+019	2.223845390113919E+019
n_dpsi [m^-3] tt	=	2.923650015250022E+016	-1.152485181787519E+021
T [kev] al	=	1706.14752719279	0.100000000000000
P [Pa] al	=	84580.2007337157	L.343662699096967E-002
n [m^-3] al	=	3.094151949877985E+017	838648101362688.
n_dpsi [m^-3] al	=	-2.923649776376930E+016	-2.068599540021377E+016

Ŧ Ŧ ▼

• •

-

Tips and tricks, troubleshooting

how to load custom modules , e.g. LIGKA actor has been updated:

load lastest version of EP-Stability WF:

module load EP-Stability-WF/1.0.3-intel-2020b-DD-3.37.0 module unload -f LIGKA module load LIGKA/1.0.5-intel-2020b-DD-3.37.0

new (and old) modules usually available here: (module use ~haywart/.local/easybuild/modules/all)

similar with other WF components such as CHEASE and HELENA to see which models are used: module show EP-Stability-WF/1.0.3-intel-2020b-DD-3.37.0

plotting with python:

if one wants frequency: -type=frequency, damping -type=damping, radial_location -type=radial_location to compare models (occurrence is overwritten in this case); if one wants plots without comparison, don't include 'compare_modes':

./general_plots_ids.py -user=popaa -database=test_DB -shot=130012 -run=10 -occurrence=0 -type=frequency -compare_modes=1 -interactivePlots=1 ./general_plots_ids.py -user=popaa -database=test_DB -shot=130012 -run=10 -occurrence=0 -type=damping compare_modes=1 -interactivePlots=1 ./general_plots_ids.py -user=popaa -database=test_DB -shot=130012 -run=10 -occurrence=0 type=radial_location -compare_modes=1 -interactivePlots=1

Prepare equilibrium:

• use scenario as given by transport code - METIS, ASTRA, JINTRAC have been tested known issues: HFPS

•IDSs not filled correctly: problematic: ff' and p' on magnetic axis •resolve: run CHEASE before running HELENA - still somewhat arbitrary q in core; problem reported to HPFS developers •no EP profile data available, distribution IDS not filled (dedicated ASCOT/SPOT runs needed) •ASTRA: step-type profile data - writing out too few digits - causes problems in splines, fuzzy spectra, om_start effects unreliable • resolve: reported to ASTRA team, should be resolved in recent simulations. LIGKA internal hack available (on request)

• use experimental data: use trview: <u>https://www.aug.ipp.mpg.de/aug/manuals/transp/trview/index.html</u> attention: results depends on quality of equilibrium reconstruction!

• custom equilibrium: use CHEASE to write IDS based on EQDSK file (or use eqdsk2ids is available on SDCC) need to add profiles in core_profiles IDS - one may use IDS_merge tool as inspiration/ scripts on request

Troubleshooting

model 5 fails

- widen n/m range
- equilibrium is not ok check IDS

in addition:

- - - -

switch on writeout =2

and check profiles that are actually used in LIGKA:

70528	Jul	14	11:48	eq_flux 00208000
6528	Jul	14	11:48	elo 00208000
6528	Jul	14	11:48	zeff_00208000
19328	Jul	14	11:48	dens 00208000
60928	Jul	14	11:48	temp1_00208000
60928	Jul	14	11:48	temp2_00208000
60928	Jul	14	11:48	temp3_00208000
60928	Jul	14	11:48	temp4_00208000
60928	Jul	14	11:48	temp5_00208000
28928	Jul	14	11:48	press1_00208000
28928	Jul	14	11:48	press2_00208000
28928	Jul	14	11:48	press3_00208000
28928	Jul	14	11:48	press4_00208000
28928	Jul	14	11:48	press5_00208000
16128	Jul	14	11:48	dens1_00208000
16128	Jul	14	11:48	dens2_00208000
16128	Jul	14	11:48	dens3_00208000
16128	Jul	14	11:48	dens4_00208000
16128	Jul	14	11:48	dens5_00208000

q-profile: plot 'eq_flux_00208000' u 1:2 w lp lw 3 density spec 1(=electrons): plot 'dens1_00208000' u 1:2 w lp lw 3 temperature spec 1(=electrons): plot 'temp1_00208000' u 1:2 w lp lw 3

LIGKA PARAMETERS <3>

start_pos	1
force_m	false
guess_start	0.0
guess_end	0.0
offset_d	0.0
d_guess	0.0
npsi_out	128
kr_read	0.0
q0	0.0d0
rad_start	0.0d0
rad_end	1.0d0
refine	0
ref_pos1	0.0d0
ref_peak1	0.0d0
nspec	5
spec_str	elddtthebe
nback	5
nhot	0
mass_ratio	-1.003
writeout	2

also, for troubleshooting switch on this flag and send the output to us....

model 5 gives me modes I do not want to carry all along the modelling chain

solution restrict radial range: choose around mode's rational surface (s=sqrt(pol_flux))

I want to scan the on-axis q-value

LIGKA can scale the equilibrium consistently, specifying q0 if q0 (in LIGKA always positive) is different from 0, it will be used to scale

• I want a fine resolution (e.g. of my continuum model 3,6) around a certain radial point

set <refine> to 1 choose radial position to refine around: <ref_pos1> choose <ref_peak1>: the larger, the more refined (exp)

refine	1	
ref_pos1	0.5d0	
ref_peak1	6.0d0	

model 4 fails

- model 4 needs a list of modes, as stored in mhd_linear/0; i.e. run model 5 first!
- algorithm does not find an extremum in the continuum
- wrong initial guess: typically extreme is strongly damped, and integration contour does not reach it
- if yes: change <offset_d> (negative increases circle, positive decrease, move in stable complex plane)
- (check ct_spectrum_<mpi_proc+10> file)
- if mode numbers are high, a higher radial grid will be needed: use more radial points in HELENA (but <500)

model 6 fails

- model 6 needs a list of modes, as stored in mhd_linear/0; i.e. run model 5 first!
- it will skip all modes that have the same toroidal mode number
- use more harmonics
- model 6 is not parallelised do not use more than ~35-40 harmonics, or machine with lots of memory
- one can also combine separate runs with different pol. harmonics to cover the full radial range

model 3 fails

- model 3 needs a list of modes, as stored in mhd_linear/0; i.e. run model 5 first!
- it will skip all modes that have the same toroidal mode number
- some branches of the continua are missing: go deeper into complex plane with offset_d
- decrease integration radius: d_guess (code runs longer)

• do I really need this mode? If local damping is large, global damping is typically even larger - will not be unstable

model 1 fails

- algorithm does not find a maximum in response and phase crossing 0 (oscillator theory)
- check response_n10_<time_stamp> file
- wrong initial guess: guess can be set manually at guess_start [omega_A0] to omega_end [omega_A0]
- do I really need this mode? If local damping is large, global damping is typically even larger will not be unstable

WF/code still fails

- set in LIGKA options writeout=2; maybe the output gives a hint?
- if not, please send me (philipp.lauber@ipp.mpg.de) the output + case (xml files)
- don't expect always an immediate answer....

on request, also standalone (non-IMAS) LIGKA version and sample input files: z_ligka.xml; Y_LIGKA_namelist for more advanced settings can be supplied; not generally supported

ives a hint? e output + case (xml files)

<parameter>

<modus>5</modus>! 1: global antenna, full gap; 2: global antenna track mode; 3: scan complex plane as given by guess_start_1, guess_start_2 with dguess; 4: find local guesses for kinetic continuum close to specified gap; 5: local analytical estimates for various AEs; 6: local and global redcued MHD solve This parameter is automatically set in the main WF window.

<min_n_tor>1</min_n_tor>! start search from this minimal tor. mode number <max_n_tor>10</max_n_tor>! end search from this max tor. mode number <min_m>1</min_m>! start poloidal mode number: typically nq_0=m (e.g. BAEs) or nq_TAE=m (TAEs) <max_m>2</max_m> ! number of gaps to be searched: for one (main) TAE gap use max_m=min_m <sidebands>5</sidebands> !side band poloidal harmonics to be used around peak_m; in analytical estimates for damping only up to 2 is implemented, for ideal MHD can be up tp 20-30 (memory limit) depending on npsi....)

<sidebands_asy>2</sidebands_asy>! shift symmetrically defined pol sidebands array by <sidebands_asy> to higher m (if positive) or lower m (if negative)

<mode_type>1</mode_type>,!0=GAM-EGAM/1=TAE/2=RSAE/3=BAE/4=EAE/5=NAE/6=EPM/7=BAAE/8=KBM/9=ITG ! note slight difference to IMAS standard...mapp ed in sub_imas_out.F; negative sign: counter propagating modes (co: ion diagmanetic direction, co: el-diamagnetic direction)

<even>0</even> even (ballooning) or odd (anti-ballooning) branch for TAEs to be considered 1 </cocp> !1 include only co (ion diamagn. direction) or counter propagating modes, depending on sign of mode_type; 2: include both co and counter progating modes <0000>

<start_pos>1</start_pos> ! use only mode with index larger than startpos - sometimes convenient when more modes are found in one mode 1 run <force_m>false</force_m>! use automatic pol mode number range as defined above, can be forced to min_m, max_m for mode 1/2 runs <npsi_out>128</npsi_out> ! number of output points for all radial quantities, default=number of eq pointa <kr_read>0.0d0</kr_read>! for mode 4 and 3 a kr can be specified - will be mode 9, not yet active

<0p/>0.0d0 ! scale equilibrium, if abs(q0) > 0.0d0<rad_start>0.0d0</rad_start> ! restrict radial range for modes of interest <rad_end>1.0d0</rad_end> ! restrict radial range for modes of interest

<offset_d>0.0d0</offset_d> ! add offset imaginary part for unstable modes manually (mode 1/2): positive to find strongly growing modes, negative to find strongly damped modes; or control complex plane (imag part) of mode 3 intergration range

<guess_start>0.0d0</guess_start> ! control mode 3 guess range (default) 1.0 [omega_A] <guess_end>0.0d0</guess_end> ! control mode 3 guess range (default) 0.0 [omega_A] ! control radius of integration circle of mode 3, default =0.02 [omega_A] <dguess>0.0d0</dguess>

<refine>0</refine> ! refine radial grid ! refine where radially? <ref_pos1>0.0d0</ref_pos1> <ref_peak1>0.0d0</ref_peak1> ! use exp {ref_peak1} to control spacing - 3 is moderate accumulation, >6 strong accumulation see sub_setgrid.F90

<nspec>2</nspec> ! this is typically set and controlled by the WF and overwritten <spec_str>eldd</spec_str> ! this is typically set and controlled by the WF and overwritten: species string: el,eh (heavy electrons for reduced mass ratio benchmarks), hh ,dd, tt, dt, he(ash), be, ca [carbon!],ne,tu,al, fh (fast hydrogen), fd (fast deuterium),

<nback>2</nback> ! number of background species <nhot>0</nhot> ! number of hot species

<mass_ratio>-1.0d0</mass_ratio>! electron mass= first ion mass/mass_ratio, e.g. for elddttal it would be mass_dd/mass_ratio

<writeout>0</writeout> ! write out level: 1,2 for eq and profile output typically needed for debugging and checking, 3 for kinetic ouput, 5 full output

! only needed when run outside WF: <shot_number_wrap>130015</shot_number_wrap> <run_wrap>1</run_wrap> <itime_wrap>40</itime_wrap> <user_wrap>lauberp</user_wrap> <machine_wrap>ITER</machine_wrap> </parameter>

all LIGKA parameters (z_ligka.xml):