

This work has been carried out within the framework of the EUROIssion Consortium, funded by the European Union via the European that of Training Programme (Grant Agreement No 10105200 — EUROIssion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Cormission: Alther the European Union or the European Cormission can be held responsible for them.

Phase Space Zonal Structures and equilibrium distribution functions in ORB5

A. Bottino¹*, M.V. Faless⁶, T. Hayward-Schneider¹, A. Biancalan¹, S. Briguglio³, Ph. Lauber¹, A. Mishchenko⁴, E. Poli¹, B. Rettino¹, G. Vlao², X. Wang¹, F. Zonca² Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany³, ²ENEA, Fusion and Nuclear Safety Department, 00044 Rescati, Roma), tatky, ³ Lohanard de Vinde Universitatic, Research Center, 2919 Paris Ia Dolfense, France, ⁴ Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany MAX-PLANCK-INSTITUT

Motivation

- Phase Space Zonal Structures (PSZSs) are obtained by averaging out dependencies on angle-like variables in the Energetic particle (EPs) distribution function.
- PSZSs play a fundamental role in regulating EP transport induced by shear Alfvén instabilities in burning plasmas, acting as a slowly varying nonlinear equilibrium state [1], see **Falessi I4.104**.
- They are of great interest for the development of reduced models for EP heat and particle transport on long time scales for future burning plasma experiments (Eurofusion Enabling Research ATEP).
 [https://wiki.euro-fusion.org/wiki/Project_No10].
- In ORB5 the PSZS is constructed by projecting the marker weights on a B-spline basis [2]. This projection can also be used as **control-variate** (evolving background) for δf PIC simulations.

Theory

• Following [3], the PSZS is defined as the angle average (orbit average) of the gyrocenter distribution function;

$$\hat{F}_{0,sp}(P_{\varphi},\mu,\epsilon) = \tau_{b}^{-1} \oint \frac{\mathrm{d}\theta}{\dot{\theta}} F_{z,sp} , \quad \tau_{b} = \oint \frac{\mathrm{d}\theta}{\dot{\theta}} , \quad F_{z} = \frac{1}{2\pi} \int_{0}^{2\pi} F_{sp}(P_{\varphi},\mu,\epsilon,\theta,\varphi) \, \mathrm{d}\varphi ,$$

~

$$\dot{ heta} = -rac{m{v}_{\parallel}}{m{e} B_{\parallel}^* J} rac{\partial m{P}_{arphi}}{\partial \psi} \;, \;\; m{P}_{arphi} = m_{sp} m{v}_{\parallel} rac{T(\psi)}{m{q}_{sp} B} + \psi \;, \;\; \epsilon = rac{1}{2} m_{sp} m{v}_{\parallel}^2 + \mu B$$

 P_{φ} constant of motion (toroidal symmetry, for $\mathbf{B} = T(\psi)\nabla \varphi + \nabla \varphi \times \nabla \psi$).

• The finite element (B-splines) representation of the PSZS is

$$\hat{F}_{0,sp}(P_{\varphi},\mu,\epsilon,t) = \sum_{l} f_{l}(t) \Lambda_{l}(P_{\varphi},\mu,\epsilon) , \quad \Lambda_{l}(P_{\varphi},\mu,\epsilon) = \Lambda_{l}^{d}(P_{\varphi}) \Lambda_{j}^{d}(\epsilon) \Lambda_{k}^{d}(\mu)$$

- $\Lambda_l(P_{\varphi}, \mu, \epsilon)$, tensor product of 3 one dimensional B-splines of order *d*.
- Set as linear algebra problem (Galerkin method)

$$\begin{split} \sum_{l} f_{l}(t) \int J_{P\varphi,\mu,\epsilon} \, \mathrm{d} P_{\varphi} \, \mathrm{d} \epsilon \, \mathrm{d} \mu \, \Lambda_{n} \Lambda_{l} &= \int J_{P\varphi,\mu,\epsilon} \, \mathrm{d} P_{\varphi} \, \mathrm{d} \epsilon \, \mathrm{d} \mu \, \Lambda_{n} \hat{F}_{0,sp} \; , \\ \sum_{l} A_{l,m} f_{l} &= b_{n} \end{split}$$

 $A_{l,m}$, elements of a symmetric sparse band matrix of rank $(N_{P_{\varphi}} + d)(N_{\epsilon} + d)(N_{\mu} + d)$.

 The right-hand-side is constructed by projecting the markers on the B-spline space.

$$b_{n} = \sum_{p=1}^{N} \left(\frac{N_{ph}}{N} \overline{\delta w}_{p} + f_{0}(P_{\varphi,p},\theta_{p},\epsilon_{p},\mu_{p})\Omega_{p} \right) \Lambda_{\nu}(P_{\varphi,p},\epsilon_{p},\mu_{p}) .$$

Example: PSZS for the NLED-AUG case, early nonlinear phase

Example: PSZS for the NLED-AUG case [4]

Control-variate

· Formally, the GK Polarization equation looks like:

$${m F}(\Phi) = \sum_{
m sp} {m q}_{
m sp} \int {m f}_{
m sp} {
m d} {m v} \simeq \sum_{
m sp} \sum_{
m p} {m w}_{
m p}$$

· Control-variate:

$$\mathcal{F}(\Phi) = \sum_{\mathrm{sp}} q_{\mathrm{sp}} \int (f_{\mathrm{sp}} - f_{\mathcal{CV},\mathrm{sp}}) \mathrm{d} \mathbf{v} + \sum_{\mathrm{sp}} q_{\mathrm{sp}} \int f_{\mathcal{CV},\mathrm{sp}} \mathrm{d} \mathbf{v} \simeq \sum_{\mathrm{sp}} \sum_{\mathrm{p}} \hat{w}_{\mathrm{p}} + \sum_{\mathrm{sp}} q_{\mathrm{sp}} \int f_{\mathcal{CV},\mathrm{sp}} \mathrm{d} \mathbf{v}$$

where $f_{CV,sp}$ is a known function, e.g. a Maxwellian or a *numerical* distribution function defined on a grid.

- If the variance of the distribution of \hat{w}_p is smaller than the one of w_p (i.e. $f_{cv,sp} \simeq f_{sp}$) the statistical noise is reduced.
- The more the distribution function departs from the $f_{CV,sp}$ the less efficient the control-variate becomes.

Control-variate using a B-spline projection

- ORB5 can already cope with numerical distribution functions defined on a grid $f(\psi, E_k, v_{||})$ (RABBIT interface, T. Hayward-Schneider, used in Ref. [4]).
- The B-splines coefficients of f_{fsa}(ψ, E_k, v_{||}) can be used to calculate the value of the function (and its derivatives) on the grid points of the numerical background distribution function of ORB5.
- The corresponding numerical distribution function is now used as **time dependent control-variate**.
- Only the particle weights are updated by subtracting the value of the control-variate at the particle position from the (conserved) value of the total distribution function.
- Caveat: if linearized polarization is used, the polarisation density should also be updated (TBD).

Example, the cyclone base case with ORB5, standard simulation

Proof of principle: $f_{\rm fsa}(\psi, E_k, v_{||})$ @ $t \simeq 0.6 \times 10^4$ as control-variate

Experimental Setup: the NLED-AUG case

- NLED-AUG case [5], ASDEX Upgrade 31213 at *t* = 0.84 s in the discharge number 31213.
- NBI generated EP; $\beta_{\rm EP} \sim \beta_{\rm BULK}$ and EP average kinetic energy $\epsilon_{\rm EP} \sim 100 \cdot T_{\rm BULK}$, reactor relevant conditions.
- Intense EP-driven activity is observed (EGAMs, SAWs, EPMs...).
- The NLED-AUG case has been widely studied and simulated by several codes, including ORB5.
- Energetic particles are simulated using an analytical pitch-angle dependent slowing-down equilibrium function (see Eq. (3) of [6]).
- Injection pitch angle $\xi_0 = v_{\parallel}/|v| = -0.5$ and EP concentration $n_{\rm EP}/n_{\rm e} = 0.0949$ are used.

Numerical Validation

- Tested on analytical distribution functions, reduced dimensionality and simplified geometry.
- Test: equilibrium F₀ reconstruction on ORB5 coordinates F
 {0,sp}(ψ, μ, ν{||}, t = 0) for the NLED-AUG case for a Maxwellian and a slowing-down (with pitch angle dependence).
- B-spline projection of F_0 is calculated at each marker position.

2D projection of the 3D flux-surface averaged F_0

• $(N_{\psi} = 30, N_{\mu} = 30, N_{\psi \parallel} = 30)$ and d = 1, integrated along the third direction.

Reconstructed EP and Bulk ion densities

Example: $f_{\rm fsa}(\psi, E_k, v_{||})$ for the NLED-AUG case [4]

If (P_φ, E_k, μ) → (ψ, E_k, ν_{||}) the PSZS numerical infrastructure of ORB5 can be used to get a B-spline projection of the flux-surface averaged distribution function at any time, f_{fsa}(ψ, E_k, ν_{||}).

References

- Zonca F, Chen L, Briguglio S, Fogaccia G, Vlad G and Wang X 2015 New Journal of Physics 17 013052
- Bottino A, Falessi M, Hayward-Schneider T, Biancalani A, Briguglio S, Hatzky R, Lauber P, Mishchenko A, Poli E, Rettino B, Vannini F, Wang X and Zonca F 2022 *Journal of Physics Conference Series* **2397** 012019
- Falessi M V and Zonca F 2019 *Physics of Plasmas* **26** 022305 (*Preprint* https://doi.org/10.1063/1.5063874)
- Rettino B, Hayward-Schneider T, Biancalani A, Bottino A, Lauber P, Weiland M, Vannini F and Jenko F 2023 *submitted to Nuclear Fusion*
- Lauber P et al. 2018 27th IAEA Fusion Energy Conference (Proc. 27th IAEA FEC) (https://conferences.iaea.org/event/151/contributions/6094/)
- Rettino B, Hayward-Schneider T, Biancalani A, Bottino A, Lauber P, Chavdarovski <u>A L. Weiland M</u>, Vannini F and Jenko F 2022 *Nuclear Fusion* **62** 076027_{BORDEAUX 2023} 17