

Update on TSVV 9: Dynamics of Runaway Electrons in Tokamak Disruptions

Thrust 3 meeting, 29/06/23

E. Nardon and the TSVV 9 team

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

DREAM predictions of RE generation in ITER (1/3)

<u>Setup:</u>

- Considered H-mode and L-mode scenarios at 15/7.5/5 MA
- Simulated either single Ne+H SPI or 2-stage (H then Ne+H) SPI
 - Ne quantity adjusted so that 50 ms < τ_{CQ} < 100 ms
- Ad hoc TQ
 - Tested 2 trigger conditions
 - Ne shards @ q=2 ('early TQ')
 - $T_e < 10 \text{ eV}$ anywhere inside q=2 ('late TQ')
 - Impose δB such that Rechester-Rosenbluth transport corresponds to prescribed τ_{TQ} (either 1 or 3 ms)
 - Same δB used to calculate RE transport
 - Fast particle (incl. Ne) mixing imposed via large D and V

Note: geometry fixed in time!

DREAM predictions of RE generation in ITER (2/3)

- Results for 15 MA DT H-mode and H L-mode:
 - Multi-MA beam in all cases ☺
 - Caused by huge avalanche gain
 - Smallest RE currents obtained

٠

- in absence of activated RE seeds (T β decay and Compton scattering from wall-emitted γ's)
- for 2-stage SPI (~suppresses hot tail seeds)

Note: need to update Compton source for W first wall

[Fülöp REM 2023]

Activated seeds make losses during the TQ ineffective

E. Nardon | Thrust 3 meeting | 29 Jun. 2023 | Page 3

DREAM predictions of RE generation in ITER (3/3)

- Bayesian Optimisation with different levels of precision in DREAM [Ekmark REM 2023]
 - Fast scoping with RE fluid model, refinement with full kinetic model
 - Realized that hot tail seed is over-estimated by RE fluid model
 - → Need to revisit previous results (which used RE fluid) with improved hot tail model
- Modelling of ablation plasmoid drift [Vallhagen JPP 2023]
 - Can be important for H SPI and thus for 2-stage scheme

E. Nardon | Thrust 3 meeting | 29 Jun. 2023 | Page 4

Effect of vertical movement assessed with JOREK

• Avalanche gain exponentially sensitive to poloidal flux variation $\Delta \psi(\Phi)$:

 $\frac{n_{RE}}{n_{RE0}} = \exp(\frac{\Delta \psi(\Phi)}{\psi_c})$

• $\Delta\psi(\Phi)$ assessed with 2D JOREK simulations

 \rightarrow Substantially smaller than in DREAM simulations due to vertical movement [Wang REM 2023]

 \rightarrow Need to revisit DREAM study

Thermal Quench electron transport studied with JOREK

- Analysis of JOREK JET Ar MGI simulation with realistic I_p spike supports relation I_p spike ↔ level of stochasticity [Nardon NF 2023]
 - But macroscopic ExB core mixing also plays an important role
- JOREK test electron tracer developed to include collisions and applied to assess transport in ITER 3D CQ simulation [Särkimäki NF 2022]
 - (Long stochastic phase but unclear if this is realistic)
- PhD on predicting hot tail generation in ITER starting this autumn (CEA-IO co-funding)

E. Nardon | Thrust 3 meeting | 29 Jun. 2023 | Page 6

Validation of avalanche modelling with DREAM and JOREK (1/2)

- Bayesian Optimisation framework applied to DREAM simulations of RE generation by Ar MGI in JET #95135
 [Järvinen JPP 2022]
 - Ad hoc RE seed \rightarrow Test only avalanche model
 - Now including synchrotron radiation [Järvinen REM 2023]

E. Nardon | Thrust 3 meeting | 29 Jun. 2023 | Page 7

Cea

Validation of avalanche modelling with DREAM and JOREK (2/2)

- Same case studied with JOREK (RE fluid model) [Nardon REM 2023]
 - Synergies with DREAM work
 - Encouraging agreement with experiment
 - Input parameters adjusted by hand
 - Real validation or fancy fit? \rightarrow Plan to use BO framework for an objective assessment

E. Nardon | Thrust 3 meeting | 29 Jun. 2023 | Page 8

RE beam (benign) termination modelling with JOREK

- Validation on JET #95135 (benign termination after D₂ SPI)
 - Building on [Bandaru PPCF 2021]
 - Improved understanding of role of resistivity in nonlinear dynamics [Nardon PoP 2023 (subm.)]
 - At large n, main islands can grow to larger size before stochastization
 - Also begun investigating dynamics when ramping up I_{p} (as in exp.) instead of starting ٠ from a very unstable situation [Nardon TSVV 9 meeting April 2023]
 - Was done w/o REs in the model, but will be repeated with REs (L. Singh)
 - Synthetic synchrotron radiation diagnostic developed and applied in presence of ٠ islands in JET #95135 [Sommariva REM & EPS 2023]
- Simulations for ITER ongoing [Bandaru REM 2023]
 - Heat loads calculated with test particles and realistic 3D wall model
- Need to model recombination and impurity 'purge' from D₂/H₂ SPI
 - Both in DREAM and JOREK
 - Looking for manpower

107

Development of a self-consistent PiC model for REs in JOREK

- JOREK electron pusher evolves a population of kinetic electrons
- Moments of kinetic electron population used in the fluid equations
 - 2 possible coupling schemes: via current or via pressure \rightarrow Implemented both
- Now in phase test, looking at equilibrium radial shift

$$\begin{aligned} \frac{\partial \rho_b}{\partial t} + \nabla \cdot (\rho_b \boldsymbol{u}_b) &= S_{\rho_b} \\ \rho_b \left(\frac{\partial \boldsymbol{u}_b}{\partial t} + \boldsymbol{u}_b \cdot \nabla \boldsymbol{u}_b \right) &= (\boldsymbol{J} - \boldsymbol{J}_r) \times \boldsymbol{B} - \nabla p_b + \boldsymbol{S}_{\boldsymbol{u}_b} \\ \frac{\partial p_b}{\partial t} + \boldsymbol{u}_b \cdot \nabla p_b + \Gamma p_b \nabla \cdot \boldsymbol{u}_b &= (\Gamma - 1) \left(\boldsymbol{Q}_b - \nabla \cdot \boldsymbol{h}_b + S_{p_b} \right) \\ \boldsymbol{E} &= -\boldsymbol{u}_b \times \boldsymbol{B} + \eta (\boldsymbol{J} - \boldsymbol{J}_r) - \frac{1}{\sigma_e} (\nabla p_e + \boldsymbol{S}_{\boldsymbol{u}_e}) \end{aligned}$$

[Bergström REM 2023]

Many other activities...

- Organization of the REM meeting (picture from last week \rightarrow)
- IMASification of DREAM, participation in development of IDSs for REs and SPI
- Effect of alpha-particle-driven modes on RE generation in ITER
- Participation in DEMO meetings + DREAM and JOREK modelling
- DREAM modelling for STEP
- JOREK modelling for DTT
- DREAM modelling for RE Mitigation Coil for SPARC
- DREAM modelling of AUG SPI & Ip spike
- DREAM modelling of effect of ripple on TCV
- Development of an analytical general atomic physics model
- DREAM modelling of RE generation in W-dominated disruptions
- DREAM+SOFT study on EDICAM camera for SR measurement in JT60-SA
- JOREK modelling of effect of SPI shards on hot tail
- Coordination of ITPA Joint Activity called 'Characterization of power deposition to PFCs by runaway electrons'
- Study on start-up REs with STREAM
- .

