ERO2.0

Xavier Saez

31/08/2023

* InJanuary, Federico Cipolletta joined or group = JOREK

* |In August, Augusto Maidana has joined our group = ERO2.0

ERO2.0

ERO2.0 is a code for modelling plasma-wall
interaction and global material migration in
fusion devices.

The migration is simulated by following 3D
trajectories of Monte-Carlo test particles.

The 3D gyro-orbits are resolved instead of
applying the guiding-center approximation.

ERO2.0 is parallelized using MP1/OpenMP.

Goal: porting to GPU

1 .6

0.4

Parallelization with CUDA

* The Octree construction is carried out on the host CPU.

* |tis hard to run efficiently on GPU due to their hierarchical and
recursive nature.

* Preparatory tasks:

— Translate the recursive tree structure to a "flattened" octree to a
linear structure, where nodes and their children are stored in
arrays. Technically, it allows more predictable traversals and is
better suited for coalesced memory access on GPUs.

— Convert the recursive octree search to an iterative process.

* Next, we can parallelize querying using CUDA.

Barcelona
Supercomputing

Center
Cerilrs Masitnal de Suparcamisulaciti

“Flattened” octree

OctreeNode.h Octree.h

Octree O 1 2 3 4 5

OctreeNodes root

Level
dUpper

isLeaf
polygons 0 1 2 3 4 5 6 7

Barcelona children 1 3 5 -1 -1 -1 -1 -1
Supercomputing

Center

Cenlre Nasiinal de Suparcamsulacda

Iterative Octree Traverse

* The current traversal of an octree is a Depth-First Search (DFS) => one
explores as deeply as possible along a branch before backtracking

* To take advantage of the massively parallel nature of GPUs we will use
Breadth-First Search (BFS) => all nodes at a given depth are visited
before visiting the nodes at the next depth.

100000

DFS

Barcelona
Supercomputing

Center
Cerilrs Masitnal de Suparcamisulaciti

i 1l
10000

BFS

l

Octree Breadth-First Search (BFS)

e use atwo-array approach: one list for the current set of nodes to be
processed and another for the next set of nodes. After each iteration,
the roles of the two lists are swapped.

* |If a node contains the polygon, we push its child nodes onto the next
nodes to process for further exploration.

, \) nextNodes

JOU000 oo o 1 2 s 4

OctreeNodes root
BFS

Barcelona

Supercomputing
Center
Cerilrs Masitnal de Suparcamisulaciti

@:

CUDA

std::vector is a C++ data structure can not be used on CUDA. Additionally,
std::vector has dynamic operations (eg: memory allocation and
deallocation) that aren't GPU-compatible

Thrust is a parallelism library similar to C++'s STL, but not recommended
inside CUDA kernels due to performance considerations and the lack of
support for certain operations

Solution: use std::vector
on the host part (CPU)

int nNextModes = 8;
and convert it manually e
to simple arrays on the e e
GPU {" (nNodes = @)

for {int 1 = 8; 1 < nNodes; i++#)

1

const OctreeNodef node = octreeNodes[idNodes[i]]:

ode.getlistanceBo
=dMin5g))

if (node.isLeaf)

Barcelona
Supercomputing

l:nnrar
l.'-_r ALRETOT. L HL

Implementation

* Memory Management

OctreeGPU.h
e Kernel Definition
& Launch
pethista d_dMin5qg, totaliod
int threa
Beveelonn OctreeGPU.cu
rrerrie 10

Cerilrs Masitnal de Suparcamisulaciti

Memory Transfer

Barcelona
Supercomputing
Center

Cerilrs Masitnal de Suparcamisulaciti

Implementation

11

Summary

e Flatten ‘octreeNode’ vector

e |terative Breadth-First Search (BFS) implemented (also in
OpenACC)

* Partial CUDA implementation, where each octree node is a
structure with multiple fields (AoS). It is simpler to manage but
it could be inefficeint for memory access patterns.

Barcelona

Supercomputing

Center 12
Cerilrs Masitnal de Suparcamisulaciti

Next steps

Flatten the ‘polygon’ vector
Finish CUDA implementation & evaluate

Evaluate SoA for octree node.

Augusto Maidana will continue CUDA work.

13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

