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* InJanuary, Federico Cipolletta joined or group = JOREK

* |In August, Augusto Maidana has joined our group = ERO2.0




ERO2.0

ERO2.0 is a code for modelling plasma-wall
interaction and global material migration in
fusion devices.

The migration is simulated by following 3D
trajectories of Monte-Carlo test particles.

The 3D gyro-orbits are resolved instead of
applying the guiding-center approximation.

ERO2.0 is parallelized using MP1/OpenMP.

Goal: porting to GPU
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Parallelization with CUDA

* The Octree construction is carried out on the host CPU.

* |tis hard to run efficiently on GPU due to their hierarchical and
recursive nature.

* Preparatory tasks:

— Translate the recursive tree structure to a "flattened" octree to a
linear structure, where nodes and their children are stored in
arrays. Technically, it allows more predictable traversals and is
better suited for coalesced memory access on GPUs.

— Convert the recursive octree search to an iterative process.

* Next, we can parallelize querying using CUDA.
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“Flattened” octree

OctreeNode.h Octree.h

Octree O 1 2 3 4 5

OctreeNodes root

Level
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Iterative Octree Traverse

* The current traversal of an octree is a Depth-First Search (DFS) => one
explores as deeply as possible along a branch before backtracking

* To take advantage of the massively parallel nature of GPUs we will use
Breadth-First Search (BFS) => all nodes at a given depth are visited
before visiting the nodes at the next depth.
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Octree Breadth-First Search (BFS)

e use atwo-array approach: one list for the current set of nodes to be
processed and another for the next set of nodes. After each iteration,
the roles of the two lists are swapped.

* |If a node contains the polygon, we push its child nodes onto the next
nodes to process for further exploration.
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@:

CUDA

std::vector is a C++ data structure can not be used on CUDA. Additionally,
std::vector has dynamic operations (eg: memory allocation and
deallocation) that aren't GPU-compatible

Thrust is a parallelism library similar to C++'s STL, but not recommended
inside CUDA kernels due to performance considerations and the lack of
support for certain operations

Solution: use std::vector
on the host part (CPU)

int nNextModes = 8;
and convert it manually e
to simple arrays on the e e
GPU {" (nNodes = @)

for {int 1 = 8; 1 < nNodes; i++#)

1

const OctreeNodef node = octreeNodes[idNodes[i]]:

ode.getlistanceBo
=dMin5g))

if (node.isLeaf)
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Implementation

* Memory Management

OctreeGPU.h
e Kernel Definition
& Launch
pethista d_dMin5qg, totaliod
int threa
Beveelonn OctreeGPU.cu
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Memory Transfer
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Summary

e Flatten ‘octreeNode’ vector

e |terative Breadth-First Search (BFS) implemented (also in
OpenACC)

* Partial CUDA implementation, where each octree node is a
structure with multiple fields (AoS). It is simpler to manage but
it could be inefficeint for memory access patterns.
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Next steps

Flatten the ‘polygon’ vector
Finish CUDA implementation & evaluate

Evaluate SoA for octree node.

Augusto Maidana will continue CUDA work.
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