
1

ERO2.0

Xavier Sáez

31/08/2023

2

People
● In January and February, two new people arrived on our staff

to increase our dedication to all ACH tasks, which includes
ero2.

● In January, Federico Cipolletta joined or group → JOREK
● In August, Augusto Maidana has joined our group → ERO2.0

3

● ERO2.0 is a code for modelling plasma-wall
interaction and global material migration in
fusion devices.

● The migration is simulated by following 3D
trajectories of Monte-Carlo test particles.

● The 3D gyro-orbits are resolved instead of
applying the guiding-center approximation.

● ERO2.0 is parallelized using MPI/OpenMP.

● Goal: porting to GPU

ERO2.0

4

Parallelization with CUDA
● The Octree construction is carried out on the host CPU.

● It is hard to run efficiently on GPU due to their hierarchical and
recursive nature.

● Preparatory tasks:

– Translate the recursive tree structure to a "flattened" octree to a
linear structure, where nodes and their children are stored in
arrays. Technically, it allows more predictable traversals and is
better suited for coalesced memory access on GPUs.

– Convert the recursive octree search to an iterative process.

● Next, we can parallelize querying using CUDA.

5

“Flattened” octree
Octree.hOctreeNode.h

root ···OctreeNodes

Level
dUpper
isLeaf
polygons

children

0 1 2 3 4 5

0 1 2 3 4 5 6 7

1 3 5 -1 -1 -1 -1 -1

Octree

6

Iterative Octree Traverse
● The current traversal of an octree is a Depth-First Search (DFS) => one

explores as deeply as possible along a branch before backtracking

● To take advantage of the massively parallel nature of GPUs we will use
Breadth-First Search (BFS) => all nodes at a given depth are visited
before visiting the nodes at the next depth.

DFS BFS

7

Octree Breadth-First Search (BFS)
● use a two-array approach: one list for the current set of nodes to be

processed and another for the next set of nodes. After each iteration,
the roles of the two lists are swapped.

● If a node contains the polygon, we push its child nodes onto the next
nodes to process for further exploration.

BFS

nextNodes

root ···OctreeNodes

0 1 2 3 4 5 Octree

8

Octree Breadth-First Search (BFS)

9

CUDA
● std::vector is a C++ data structure can not be used on CUDA. Additionally,

std::vector has dynamic operations (eg: memory allocation and
deallocation) that aren't GPU-compatible

● Thrust is a parallelism library similar to C++'s STL, but not recommended
inside CUDA kernels due to performance considerations and the lack of
support for certain operations

● Solution: use std::vector
on the host part (CPU)
and convert it manually
to simple arrays on the
GPU

10

Implementation
● Memory Management

● Kernel Definition
& Launch

OctreeGPU.cu

Octree.cpp OctreeGPU.h

11

Implementation
● Memory Transfer

12

Summary
● Flatten ‘octreeNode’ vector
● Iterative Breadth-First Search (BFS) implemented (also in

OpenACC)
● Partial CUDA implementation, where each octree node is a

structure with multiple fields (AoS). It is simpler to manage but
it could be inefficeint for memory access patterns.

13

Next steps
● Flatten the ‘polygon’ vector
● Finish CUDA implementation & evaluate
● Evaluate SoA for octree node.
● Augusto Maidana will continue CUDA work.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

